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Imperfections in gear tooth geometry often results from errors in the

manufacturing process or excessive material wear during operation. Such faults in the

gear tooth geometry can result in large vibrations in the transmission system, and, in some

cases, may lead to early failure of the gear transmission system. This report presents the

study of the effects of imperfection in gear tooth geometry on the dynamic characteristics

of a gear transmission system. The faults in the gear tooth geometry are modeled

numerically as the deviation of the tooth profile from its original involute geometry. The

changes in gear mesh stiffness due to various profile and pattern variations are evaluated

numerically. The resulting changes in the mesh stiffness are incorporated into a computer

code to simulate the dynamics of the gear transmission system. A parametric study is

performed to examine the sensitivity of gear tooth geometry imperfections on the

vibration of a gear transmission system. The parameters varies in this study aconsist of

the magnitude of the inperfection, the pattern of the profile variation, and the total

number of teeth affected. Numerical results from the dynamic simulations are examined

in both the time and the frequency domains. A joint time-frequency analysis procedure

using the Wigner-Ville Distribution is also introduced to identify the location of the

damaged tooth from the vibration signature. Numerical simulations of the system

dyanmics with gear faults were compared to experimental results. An optimal tracker was

introduced to quantify the level of damage in the gear mesh system. Conclusions are

drawn from the results of this numerical study.
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CHAPTER 1

ncrRODUCnON

Gearing, one of the most universally used machine elements, is applied in

mechanical systems of every size and description: from the tiny pinions in a watch or a

computer system to the high-speed, heavily-loaded reduction gears of an aircraft gas

turbine. In the last two decades, the use of gear transmissions in both defense and

commercial applications has substantially increased. With the demand for higher power

and performance, premature failures in transmissions often result in financial losses, and

sometimes even lead to catastrophic consequences. In the aerospace industry, where both

weight-to-load factor and efficiency are pushed to their design limits, one of the major

concerns is fatigue failures in rotorcraft gear transmission systems. Such failures are

often a result of excessive gear tooth wear and tooth crack formation. Presently, the

prevention and management of premature equipment failures has become a vital part of

the maintenance program,

Current on-board condition monitoring systems for gas-turbine engine systems

often fail to provide sufficient time between warning and failure such that safety

procedures can be implemented. On the other hand, inaccurate interpretation of

operational conditions may result in false alarms and unneces_y repairs and downtime.

The early detection of incipient failure in a mechanical system is of great practical

importance as it permits scheduled inspections without costly shutdowns, along with

indication of urgency and location for repair before any catastrophic failure.

Presently, a considerable amount of work in machine life prediction has been

carried out using machine reliability and design life approaches[ 1,2 ]. However, most of

this work is based on statistical predictions developed by Lundberg and Paimgren[ 3 ]

without considering the conditions of machine components during various phases of their

lifespen. Besides the work reported in recent years by the Mechanical Failure Prevention

Oroup(MFPG)[ 4 - 6 ], very little has been cited in the literature concerning condition-

based failure prediction.
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The increasing requirements for long life and safe operation in mechanical

systems call for the development of an accurate machine fault identification and failure

prognostication system which is capable of on-line machine health monitoring as well as

machine life prediction. One of the advanced fault identification procedures used in

rotorcraft mechanical systems is the signature analysis of machine vibration/acoustic

signals[ 7 - 9 ]. The acquired machine vibration/acoustic signature is compared to a data

bank of standard healthy machine operation signatures to pinpoint the abnormalities of

the input signal. This procedure does not require a shut down of the rotating machinery,

and can be used as an in-flight diagnostic and trend monitoring device.

In order to develop an accurate machine fault identification and failure

prognostication system, it is very important to understand the dynamics of a gear

transmission system under a variety of fault conditions, as well as under nominal

conditions. This study deals only with the basic knowledge in fault identification of gear

component and the dynamic modelling of a gear transmission system under the effects of

gear tooth geometry imperfection.

The major objective of the research presented herein is the development of a

numerical model to predict the vibration in a gear transmission system due to gear tooth

imperfection or damage. The imperfection/damage of the gear tooth geometry is modeled

numerically as the deviation of tooth profile from its original geometry. To simulate gear

failures, a computer code developed at NASA Lewis Research Center[ 10 ] was modified

to simulate various types of gear mesh conditions. The changes in mesh stiffness due to

the effects of tooth wear can be represented by using a tooth profile modification

procedure. The resulting changes in mesh stiffness are incorporated into the dynamic

simulation of the gear transmission system.

In simulating the vibration of the transmission system, the equations of motion are

established individually for each rotor-gear-bearing system. These localized changes in

the gear mesh stiffness are incozporated into each gear-rotor model during the dynamic

simulation [ 11-13 ]. The dynamics of each gear-rotor system are coupled with each other

through the gear mesh interacting forces and the bearing supporting forces. The global

vibrations of the system are evaluated by solving the set of coupled transient dynamics
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equations of all the rotor systems simultaneously including the vibration of the casing. In

order to minimize the computational effort) the number of degrees-of-freedom of the

system are reduced by using a modal synthesis procedure[ 11,12 ].

Results from the model were examined using a joint time-frequency analysis

method. This approach was chosen because the joint time-frequency analysis will

provide an instantaneous frequency spectrum of the system at every instant of the

revolution of the pinion while the traditional frequency analysis can only provide the

average vibration spectrum of the signal. In other words, the time-changing spectral

density from the joint time-frequency spectra will provide vital information concerning

the frequency distribution concentrated at a particular instant. The Wigner-Ville

Distribution (WVD) [ 14-16 ] was chosen for the joint-time frequency analysis.

Considerable success has been achieved in applying the WVD to gear transmission

systems [ 17,18 ] to recognize faults at various locations of the gear.

In addition, experimental results obtained from a gear failure test rig at NASA

Lewis Research Center were also used to experimentally validated the identification

procedure using the WVD as well as to verify the numerical simulations. A technique for

quantifying the damage in a gear mesh using an optimal tracker was also developed, and

results obtained using the optimal tracker were compared with those from the

experimental studies.

Based on results of this study, general conclusions are made concerning the

effects of local damage on the global damage of the gear transmission system. This study

applied the above discussed methodology on a variety of damaged gear models. The

numerical model used to simulate the dynamics of a gear transmission system with gear

tooth geometry imperfections was successfully developed. In addition, considerable

success was achieved in generating a comprehensive database of the vibration signal due

to various kinds of gear tooth geometry imperfection patterns a in gear transmission

system. Some limited success was achieved in quantifying the damage using an optimal

tracker. Using the developed analytical/numerical model, a gear more extensive

fault/damage database can be developed for machine fault identification and failure

prognostication research.
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2,1.Objective

The magnitudevariationinthetoothmesh stiffnesscan affectgearmesh

dynamics and loading significantly. The first step in determining the effects of gear tooth

imperfections on mech dynamics is to determine the relationship between gear tooth

imperfections and the resulting change to gear mesh stiffness.

The objective of this chapter is to develop a relationship describing the effects of

gear tooth imperfections on the static behavior of a gear system, with an emphasis on the

gear mesh sfif_ess. The method which calculates the tooth mesh stiffness of a gear

system is presented by Richardson [ 19 ]. The imperfection of a gear tooth is modeled

numerically as the deviation of the tooth profile from its designed geometry. The changes

in gear mesh stiffness due to variousprofile changes and imperfection patterns are

evaluated numerically. A computer code developed at NASA Lewis Research Center[ 10

] was modified to simulate various types of gear mesh conditions.

2.2. Gear Kinematic Properties

The ideal kinematic requirement for gear action is constant speed ratio. That is,

the angular velocity of the driven gear should be a constant multiple of the angular

velocity of the driving gear, Two curves that possess the property of constant speed ratio

when operated as contacting tooth surfaces are called conjugate curves, From the in_nlte
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variety of possible conjugate curves, the involute has been almost universally accepted

for use in gearing. An involute curve is generated by the end of a line that is unwound

from the circumference of a circle called the base circle.

Figure 1 shows two gear teeth in contact. Point L on gear 2 is in contact with

point M on gear 1. At this point of contact, the two tooth surfaces must be tangent to

each other and consequently must have a common normal W1W2 passing through the

point of contact which intersects the line of centers C_ C2 at the instant center P, called the

pitch point. Since ideal gears are assumed rigid, the velocities of L and M along the

normal W1W2 must be equal. The velocities of L and M perpendicular to the normal

sliding or relative velocity of the tooth surfaces.

=w2c2)v ; v,,=w,c w, (2.D

where wl and w2 are the angular velocities of gears I and 2, respectively. Hence, by

similar triangles

wl R 2
(2.2)

This equation is frequently used to define the law of gearing, which states that the pitch

point must remain fixed on the line of centers. This means that all the lines of action for

every instantaneous point of contact must pass through the pitch point. Consequently,

ideal gears can be represented ldnematically by two imaginary cylinders of radii Rl and

Ra, called pitch cylinders, which roll on each other without slipping,
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If no friction is present between themating gear profiles, then the resultant force

transmitted at the contact point L must lie along the common normal. For this reason the

common normal is called the pressure line, and the angle between the normal and a line

perpendicular to the line of centers CIC_ is called the pressure angle 0. The locus formed

by all points of contact as the gears rotate is known as the path of contact.

In order to maintain continuous conjugate action, a series of conjugate curves are

spaced uniformly around the circmnference of a gear. The separation of these curves,

measured along the pitch circle, is called the circular pitch

27rR

Pc- i (2.3)

where i is the number of teeth, and R is the pitch-circle radius. The diametricalpitch is

defined as the number of teeth on the gear per inch of pitch diameter, as indicated in the

following equation;

i

P- 2R (2.4)

The relationship between circular pitch and diametral pitch is as follows:

g P = (2.5)

In an involute gear, the spacing of successive involutes along the pressure line or

line of action is known as the normal pitch, and is related to the circular pitch defined by

Equation (2.3) in the following way

P. = Pc cos 0 (2.6)

The contact-ratio is defined as the path of contact divided by the normal pitch,

and is a measure of the average number of tooth-pairs in contact. To provide continuous

action the contact ratio must be greater that one, and for most power transmission



8

gearing, the value of this quantity ties between the values of one and two. In some

instances, the contact ratio can be as high as four.

The radial length of the teeth beyond the pitch circle is called the addendum

distance, and the radial depth of the teeth below the pitch circle is called the dedendum

distance. By trade association standards, these distances are specified as constant

multiples of the circular pitch.

The location in the gear mesh of the contact point between mating teeth can be

specified conveniently by the distance, s, between the pitch point and the contact point,

measured along the line of action.

When load is being transmitted through the gear mesh, the load is carded either by

one pair of teeth alone or jointly by two or more pairs of teeth depending on the value of

the contact ratio. It is assumed here that the contact ratio is between one and two. As the

gears rotate, the load is transferred from teeth that are in mesh to succeeding teeth that are

moving into mesh. Similarly, teeth moving out of mesh relinquish load as they leave

contact.

2.3. Load-Deflection Properties of a Gear Mesh

2.3.1 Definition of Spring-Stiffness of Gear Mesh

The ideal curves that are used to form gear teeth are designed to produce a

constant speed ratio. That is, the gears behave like two imaginary pitch cylinders which

roll without slipping.



9

In actualgears,thematerialsemployed cannot be absolutely rigid; consequently,

the gear-teeth will deflect due to the transmitted loads,which will cause the ideal pitch

circles to slip. Thus a deviation from ideal kinematic operation occurs.

For example, in Figure 2, gear 2 is fixed, by definition its pitch circle is also

fixed. Now consider a torque xl to be applied to the mating gear 1. This torque on gear 1

must be balanced, for static operation, by the moment of the resultant force F, which, in

the absence of friction, acts along the pressure line.

rl =FcosORi (2.7)

or in terms of T, the component of W which acts tangentially to the pitch circle,

xl = TRI (2.8)

When friction is present, or contact between mating teeth lies off the pressure line, W and

T in Equations. (2.7) and (2.8) no longer represent tooth loads exactly, but are still

convenient ways of expressing the input torque _!.

The spring stiffness of the gear mesh is defined as the amount oftamgential load

T, computed from Equation (2.8), to produce one unit of pitch-circle slip, 8, as shown in

Figure 2

T

Kp = _ (2.9)
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Figure 2 (a) Pitch - Circle Slip
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(b) Loaded Gear Teeth
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(o) Applied Loads

Figure 2 Definition of Gear-Mesh Spring-Stiffness
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This definition can be equally well stated as the amount of load W acting along

the pressure line, required to produce one unit of relative displacement(st) between gears,

measured along the pressure line

F
k = -- (2.10)

S r

'Where

and

F cos e = T (2. I I)

sr= 8 cose (2.12)

These two spring stiffness are related by virtue of Equations. (2.11) and (2.12)

T Kp

k = _(cos2 O) cos _ 0 (2.13)

F_

w

=

= .

= :

L

2.3.2 Compliance for a Single Pair of Teeth

The determination of the compliance of gear teeth is considerably difficult

because it is an integral function of the entire loaded tooth. In addition, because of the

stubbiness of the teeth, the foundation and shear effects are important. Comeli's method

[ 20 ] parallels, to a great extent, Weber's work[ 21], however Comell uses O'DonnelPs

foundation factors [22,23 ]. The total compliance or flexibility of a gear tooth at the point

of load, yr, is made up of three deflections:

1. The basic deflection of the tooth as a cantilever beam, yB;

2. The deflection of the tooth caused by the fillet and foundation flexibility [ 22 ], YF;

3. The local deflection caused by the contact and compression between the two teeth, YL.

w



13

1

When two gear teeth are in contact, the total compliance is their combined

deflection per unit of load at the contact position or

C = (Yr, + Yr2 )/L = [(Ys, + Yo2 ) + (YF, + YF2 ) + YL )]/L (2.14)

where L is the applied load, and the deflections y are in the direction of the load. The

methods to calculate the three types of deflections in equation (2.14) are given below,

L_

w

1

2.3.2.1 The Basic Deflection of the Tooth as a Cantilever Beam

When a load L is applied to the surface of a gear tooth, a deflection of the tooth

occurs in the direction of the load. Suppose that the tooth is rigid near the point of

loading. Then deflections of the tooth will still occur due to each of the following effects.

1. Bending of the tooth in the manner of a cantilever beam.

2. Direct compression of the tooth due to the radial component of the load (N)

3. Direct shearing of the tooth due to the tangential component of the load (T).

The deflection and, therefore, compliance of a gear tooth over its beam portion is

easily obtained using elementary strength of materials. Referring to Figure 3(a), the total

of the bending and shear deflection in the direction of and at the point of application of

the tooth load L, which is at radius RL or position S along the line of action, can be

expressed in integral form as

Y"- Lc°s=E¢i l0{I°rl7drl+ 2"4°O+P)+ran=¢i}clza (2.15)

where I is the section modulus of the tooth, and using the relationship of

{=x or rl=z; rl=(i-g)=z=(i-x) (2.16)

w
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(a) Integration Form

w

(b) Segmen_ Form

Figure 3, Beam compliance of a gear tooth
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and a value of 1.2 has been assumed for the shear factor based on a rectangular tooth;

G=E/2(1 +/.2) (2.17)

and A is the cross-sectional area as a function ofx or z. The deflection of the basic tooth

c.an also be defined in a summation exprossion rather than integral form, see Figure 3(b),

In this ease the tooth beam deflection at and in the direction of the load is

i

w

= =

w

s :

w

"Where

and

1/z,=(1,,+w,..)/2 (2.19)

1/_ = (l/A, + I/A,+,)�2 (2.20)

Using these inverse forms for the values of [_ and A",,improves the accuracy for a small

number of elements. In equation (2.18)

l, = (i-x,) (2.21)

and

8,. = (x,+, - x, ) (2.22)

Both approaches for beam flexibility assume a narrow tooth width, W. For wide teeth

where W/l b > 5, the flexibility is decreased by the antielastic effect, so that the values of I

in equations (2.15) and (2.18) should be divided by (1-_t2).



16

2.3.2.2 The Deflection of the Tooth Caused by the Fillet and Foundation Flexibility
p,

Because of the fillet and the flexibility of the material to which the tooth is

attached,additionaldeflectionwilloccurattheload;seereferences[21-23 ]. Thisfillet

and foundationdeflectioninthedirectionoftheload,YB isa functionofthefillet

geometryand theloadpositionand direction,and isdeterminedby theeffectivefillet

lengthorangle_ forwhich themaximum deflectionorwork occursattheload.

Based on Figure4,O'Donnell[22,23 ]shows thatthedeflectionatand inthe

directionofthetoothloaddue tothefoundationeffects,Ym forplanestressis

L os + ra66 I,, I <=,
YF_= WE LTt,._--_-F) +2(1-/x) +1.5341+2.4(1+/.x) )

L_

,i

F_

w

w

F

For wide teeth the expression for plane strain is used or

LCoE
Y_v - (1-/-t2)

WE

16.67(IF 12
--;-tV,-,) +

2(1-/x--2"--F27(_1 +l-_x _ 1-534(1

(2.24)

The O'Dormell coefficients in equations (2.23) and (2.24) differ slightly from those given

by Weber[ 21]. The first term in the brackets is the deflection at L due to the rotation

caused by the moment at hF. The second term is the sum of the deflections at L due to the

displacement at hF caused by themoment at hF and therotationathFcausedby theshear

force at hF. The first part of the third term is the displacement at L due to the shear force

at hF based on the assumption that the effective depth for determining this deflection is

21/2 times the tooth thickness [ 21 ]. The second part of the third term is the deflection at

w
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w

L due to the normal component of the load assuming the same relationship holds as

indicated by the beam deflection equation; see equations (2.15) and (2.18).

Referring to Figure 4, the deflection at and in the direction of the load due to the

flexibility of the fillet and foundation, YF, the shaded region, is obtained from the

summation of the fillet beam deflection, y_, using equations (2.15) and (2.15), and the

foundation deflection YFF,Using equation (2.23) or (2.24), i.e.,

yF = Y_ +y_ (2.25)

where

ly = 7 + r(Siny F - Sin f)

h F = -h + 2r(Cos7 - CosyF )

l_ = [ + r(Sinr, - SinT)

h,= "h+2r(Cosf-Cos),,)

(2.26)

The value of 7_ is the one that maximizes the value ofyF or YT,which can easily be done

as one integrates or sums up the deflection of the tooth starting at the beginning of the

fillet or at the load position,

17

2.3.2.3 The Local Deflection Caused by Compression of the Tooth Surfaces

The local compliance, YL,Consists of the Hertz or line contact deflection plus the

compression of each tooth between the point of contact and the tooth centerline. Figure

15 gives the nomenclature for the parameters that determine the local deformation. There

are several approaches to calculate the local compliance. All of the expressions for the

local deformation are nonlinear with load because of the Hertz half contact width b.

Here, the closed form approach developed by Weber[ 21 ] was adopted.

. 4
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w

Weber in reference[ 21] developed an expression specifically for the local

deformation of two gear teeth, based on Hertz's work on deformation between cylinders.

In order to obtain a closed form solution, he assumed small deformations so that just the

first two terms of the binomial expansion of the deformation needed to be used - i.e.,

w
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w
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W
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Figure 4. Fillet and foundation compliance of a gear tooth
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Figure5, Nomenclaturefor localcompliance
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If El = E2 and Ill = I,ta, equation (2.27) reduces to

4(l-/x2) L[h_2 _-) I /.z
Y'=  'L-t ---_)-t,2(l---/x)) (2.29)

The overall compliance, C, of the tooth pair is obtained by adding the local gear

tooth compliance defined by equation (2.27) with the gross tooth compliance for the two

gear teeth

( yB + _) / L given by equations (2.15) or (2.18) and (2.25); see equation (2.14).

2.3.3 Load - Deflection Relationship of a Gear Mesh

When the total compliance for a single pair of teeth is known for all points of

contact along the pressure line, computation of the gear-mesh compliance can be carded

out. Two cases are possible:

l. Only one pair of teeth is in contact; then the mesh compliance is equal to the single -

tooth pair compliance. This is normally the case when contact is near the pitch point.

2. More than one pair of teeth is in contact. Successive pairs of teeth are spaced along

the line of action by one normal pitch. Consequently, the compliance curves for

successive tooth -pairs also can be spaced along the line of action by the same

amount.

For simplicity, the real gear - action is modeled as shown in Figure 6 which

represents engagement and disengagement of the various pairs of teeth. The gear action

can be represented by the movement of a cam underneath successive pairs of teeth. This

w
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cam is shown in Figure 6 during its passage underneath tooth-pairs n, n-1 and n+l;

however, after leaving these pairs) it will continue on) bringing other tooth pairs into

contact in succession. Point P on the cam surface corresponds to pitch-point contact, and

when any tooth-spring is contacting the cam at P, that tooth-pair is in contact at the pitch-

point in the real gear system. Tooth-springs in the model are spaced in the gear by an

interval of one normal pitch, just as the actual tooth-pairs are spaced in the gear system.

The distance AC on the cam is fiat, and is equal to the ideal path ofcontact. Any tooth-

pair start engagement at point E and is in full engagement at point A and remain in

contact until point C is reached, then starts disengagement, untilpoint D is reached.

The load W is the total load transmitted through the mesh, and Sris the relative

motion between mating gears, measured along the pressure line. The relative motion is

resisted by the tooth-pair stiffness, kn, kn+l, kn4, etc., depending on the number of teeth

in contact.

For example, tooth-pairs n and n+l are in contact at the position shown in Figure 6,

the compliance for the mesh at this position is given by the resultant compliance of the
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L=TI/R_n = T2/

v

=:_..

Fig. 6 Model of Gear Action
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tooth-springs n and n+l, Since the load L is shared between the two springs, the total

compliance is the parallel-combination of the individual compfiance.

i I I
- + (2.30)C,o,,,, q C.÷,

or

C,,C.+ I

C'°'_' - C. + q+, (2.30

This result is easily generalized to the combined compliance for n pairs of teeth.

n

1-It,

r=l k=l m=r+l

(2.32)

where each C refers to the component compliance of a given tooth-pair at a certain

location along the pressure line.

2.4. Model of Imperfection in Gear Tooth

To simulate gear failures, a computer code developed at NASA Lewis Research

Center[ 10 ] was modified to simulate various types of gear tooth imperfection. The

imperfection of the gear tooth was modeled by using a tooth profile modification

procedure that simulates changes in gear tooth surface profile. The tooth profile

modification is represented by their respective cams in Figure 6. The cams representing

the tooth profile modifications have the form

Ce (S - Se) x and Cd (-Sd - S) x respectively (2.33)

where x is an integer. Typical gear tooth profile modifications were found to be

represented quite well by simply using a cam form with x = 2; see Figure 6.

w
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Hence the imperfection of the tooth can be simulated by engagement and

disengagement tooth profile modifications _d and _e, which represent the deviation of the

profile from the ideal tooth geometry, and are assumed to be a square function of the

distance along the line of action, e.g.

_j, =C,(Sj -S,) _ and sj,_ =C,t(Sj-S,_) _ (2.34)

where Sj reflects the distance along the line of action from the pitch line; Sd and Se, the

distance along line of action from pitch line to the start of disengagement cam and end of

engagement cam; Cd and Ce, disengagement and engagement cam relief, which are

determined by:

c, = :,, / (so, -s,) and = / (Sod (2.35)

Where Sodand Soe, represent distances along the line of action from pitch line to end of

disengagement cam (tooth tip) and start of engagement cam; t_ and _, maximum

disengagement and engagement tooth relief for the tooth pair, which is the total or

combined tooth pair relief at the start and end of an ideal mesh.

Figure 7 shows how this model in Figure 6 relates to the real gear tooth.

Suppose the tooth shown in Figure 7 is the driven gear. In Figure 7, the point P is the

pitch point of the tooth pair; point E is the start point of engagement; point A is the end

point of engagement; point C is the start point of disengagement; and point D is the end

point of disengagement.

t_
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Length of Amount of

Lengt

h of
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/ True involute

•c/'Y- of
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"D 1
%""---- Lowest point of

%

%

Modified

Figure 7. Gear tooth with modified tooth profile

(The lengths of Soeand Se are measured along the line of action)

Tooth profile modification can be divided into two parts: one is the engagement

part, which is the tooth face between points E and A; another is the disengagement part,

which is the tooth face between points C and D. When two gears are in mesh, modifying

the tooth tip of one gear is the same as modifying the tooth root of the other gear.

= =
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Hence the disengagement part can be defined as the driving gear tooth face betweea point

A andE.

To simulate the wear of a tooth face, two parameters needed to be specified. One

is PsoD / Psor, which is the length of profile modification as a percent of the length of

total disengagement or engagement measured along the line of action. This parameter

determines the length of tooth wear. Another one is Ao and _e, which is the maximum

disengagement and engagement tooth relief for the tooth pair, which is the total or

combined tooth pair relief at the start and end of an ideal mesh. This parameter

determines the maximum wear at the tip or the root of the gear tooth.

L_
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2.5. Discussions of Results

As outlined above, there are two parameters which control the simulated tooth

wear. A parametric study was conducted to evaluate the change in gear-mesh stiffness

under different wear conditions. The analysis given above, along with its corresponding

computer code was used to analyze the gear-mesh stiffness change of a gear system under

different wear conditions.

For simplicity, a single stage gear mesh was chosen (one input gear and one

output gear). The pertinent parameters for the system are given in Table 1. An example

of the input data for the system is given in Table 2.
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r_

Diametrical Pitch

Pressure Angle (degree)

Table 1 Parameters of Gear System

Fa_ Width (in)

Input Torque Ob.in)

input gear

z.4667

output gear

g.4667

22. 22.5

Number ofTc_th 14 28

1,1811 1.1811

30

InputRPM 7000

l

m

Table2 Gearbox InputData Set

Ge,arbox_ Input pinion & gear
5 1. 2. 8.4667

0.

22.5 O.

2 6. 14. 28.

2 9. 1.1811 1.1811

3 12, 1, 4. 30.

3 15. 6000, 6000. 1.

1 28..0280835

1 31, ,077535

1 52. .1

4 60. 50. 50. .000021 .000021

3 66. 60, 40, ,00001

1 7g. .00001

1 120. 0.

3 140. 25. 180. .0528

2 150, .01 20.

1 167. .0075

3 481. ,00000000 ,00000000 ,00000000

3 521. .00000 .0000 .00000

I 699. 0.

1 806. 1.

0-1.

|7
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First, Let's analyze the wear of engagement:

1. P_ was fixed at 50%, that is, the length of wear was fixed; the tip relief,

A_, was chosen as le-5 in, 2e-5 in, and 4e-5 in. The results are shown in

Figure 8.

2. Ae was fixed at 2e-5 in, that is, the maximum amount of wear at the tip or

the root of the gear tooth was fixed; the length of wear, P_, varied at

50%, 60% ,70% and 80%. The results are shown in Figure 9.

Second, Let's analyze the wear of disengagement part:

1. Psod was fixed at 50%, that is, the length of wear was fixed; the tip relief,

Ad, was chosen as le-5 in, 2e-5 in, and 4e-5 in. The results are shown in

Figure 10.

2. Adwas fixed as 2e-5 in, that is the maximum amount of wear at the tip or

the root of the gear tooth was fixed; the length of wear, Psod, varied as

50%, 60%, 70%, and 80%. The results were shown in Figure 11.

Finally, both the wear of the engagement and disengagement were considered:

1. P_ and Psodwere fixed at 50%, that is the length of wear was fixed; the tip

relief, A_ and Ad, were chosen as 2e-5 in, 4e..5 in, 6e-5 in, and 8e-5 in.

The results are shown in Figure 12.

2. Ae and Adwere fixed at 2e-5 in, that is the maximum amount of wear at the

tip or the root of the gear tooth was fixed; the length of wear, Poe and P=_,

varied as 50%, 60%, 70%, and 80%. The results are shown in Figure 13.



29

has no wear

........... tip wear le-5 (50%)

.... tip wear 2e-5 (50%)

w _ tipwear 4e-5 (50%)

w 4.5e+6

w

w

w

i

A

.N

gl

4.0e+6

3.5e+6 -

3.0e+6

2.5e+6 -

2.0e+6.

I
1
I
I
I

I

I

I
i
I
I

-<Lj
I I I I I I I I

0e+0 5e-5 le-4 2e-4 2e-4 3e-4 3e-4 4e-4 4e-4

dislance along line or"aclion in terms of time t (s)

Figure 8, Mesh stiffness due to the tooth surfac_ wear on engagement

(Different value of tip relief, while the wear Mngth remains fixed)
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Figure 9, Mesh stiffness due to tooth surface wear on engagement

(Different value of wear length, while the tip relief remains fixod)
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.... _ip wear 2e-5 in (50%)

-- - lip wear 4e-5 in (50%)

4.5e+6

_ _

w

w

W

E

c

.o
v

O3

4.0e+6 -

3.5e+8 -

3.0e+6 -

2.5e+6 -

2.0e+6

I

i
I

1
I
i
I
I

I

i

!
I

f

I I I I I I I [

Oe+O 5e-5 le-4 2e-4 2e-4 3e-4 3e-4 4e-4

d[slance along line of action in terms of time t (s)

4e-4

w

Figu_ tO, Mesh s6ffness due to tooth surface wear on disengagement

(Differentvalue of tiprelief, while the wearlength remainsfixed)
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Figure 12. Mesh stiffness duo to tooth surface wear on both engagement and

disengage, meat (Diffcreat value of tip rdicf, while the wear length r_.,mains fixod)
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Figure 13. Mesh stiffness duo to tooth sur_c¢ wear on both engagement and

disengagement (Different value of wear length, while tip rdidre, mains fixd)
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From Figure 8-13, it is obvious that the gear tooth damage duo to surface pitting

and wear can significantly change the phase of the mesh stiffness. The higher degree of

surface pitting and wear, the more the phase of the mesh stiffness will shift,

w

w

2.6. Summary

A numerical model has been developed to simulate the gear mesh stiffness change

resulting from gear tooth damage due to surface pitting and wear. The work in this

chapter can be summarized as follows:

l. A method has been developed to simulate the tooth surface wear in a gear

transmission system. The tooth surface wear level can be controlled by adjustment

of both amplitude and length in the tooth profile modification.

2, The gear mesh model has been developed to provide the mesh stiffness with the

effect of gear tooth damage due to various degrees of surface pitting and wear. It

will be shown in the next chapter that these changes in gear mesh stiffness can be

incorporated into a dynamic simulation of the gear transmission system for

dynamic predictions.

w

\
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CHAPTER 3

THE EFFECTS OF GEAR TOOTH IMPERFECTION ON THE DYNAMIC

CHARACTERISTICS OF GEAR TRANSMISSION SYSTEMS

E---

7--

=.7

W

r

3.1. Objectives

In the last two d_ad_s, problems arising from excessive gear tooth wear and gear

tooth surface pitting in gear transmission systems have been of increasing concern for a

variety of gear users. Although regular visual insp_tions and preventive maintenanc_

can help to reduce the failure rate of gear systems, the cost and down time required make

such programs inefficient and uneconomical.

Vibration signature analysis methodologies are being developed to non-intrusively

examine the health and wear of gear transmission systems. Considerable success has

been achieved in applying the Wigner-Ville distribution concept (WVD) [14-16] in

machine health monitoring of gear transmission systems [17,18,24]. However, a

complete vibration signature database is necessary for the development of an effective

pattern recognition scheme. In order to populate such databases, the development of an

accurate analytical procedure to predict vibrations in gear systems due to wear and fatigue

failure is necessary.

The objective of this chapter is to develop a comprehensive procedure to simulate

and analyze the vibration in a gear transmission system with effects of surface pitting and

wear of the gear teeth under normal operating conditions. To simulate the vibration of

the transmission system, the equations of motion were established individually for each

rotor-gear-bearing system. The cha_ges of the mesh stiffness at one particular tooth
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location or a number of consecutive teeth due to the effects of surface pitting and wear

were incorporated into the gear-rotor model for the dynamic simulation [11-13]. The

dynamics of each gear-rotor system were coupled with each other through the gear mesh

interacting forces, The coupling between the rotors and the casing structure were joined

through the bearing support forces. The global vibrations of the system were evaluated

by solving the transient dynamics of each rotor system simultaneously with the vibration

of the casing. In order to minimize the computational effort, the number of degrees-of-

freedom of the system were reduced by using a modal synthesis procedure [11,12]. The

results were evaluated by Wigner-Ville Distribution (WVD) [13-15].
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3.2. Dynamics of the Gear-ShaR Configuration and the Gearbox System

The dynamics of the ith individual gear-shaft system can be evaluated through the

equations of motion for the vibrations of an individual rotor-bearing-gear system as

shown in Figure 14, given in matrix form, as

}+ ]{w, + (,)}

where [M] and [K_]arerespectivelythemass and shaftstiffnessmatricesoftherotor,

{Wi} isthegeneraldisplacementvectoroftheithrotorintheitslocalcoordinatesystem,

and, {Fbi (t)}, {Fgi (t)}, and {F= (t)} are the force vectors acting on the ith rotor system

due to bearing forces, gear mesh interactions, and mass-imbalances respectively.
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W

w

w

Bearing forces

Gear Forces

Figure 14. Schematic of a rotor-gear bearing system

The equation of motion of the gearbox with p rotor systems can be
Figure 14. Schematic of a rotor-gear bearing system.

[M, }+[K¢]{Wo}: [L
1=1

expte.ssed as

(3.2)

whore [T_ represents tho coordinato transformation between tho ith rotor and tho

gearbox,
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The bearing forces {Fbi (t)] for the ith rotor can be evaluated as

{Fb,(t)}: [Cb,]({_ }-[T.: ]{W_,})+ [Kb, ]({W_}-[T._ ]{W_,}) (3.3)

where [Cbi ] and [Kbi ] are respectively the damping and stiffness of the bearing, [Tic ] is

the coordinate transformation matrix for the gearbox with respect to the ith rotor, and We

are the easing displacements at the rotor locations.

The gear forces generated from the gear mesh interaction[40] can be written as

{F_,(t)}: {F. (t)} + {F, (t)} (3.4)

where {F, (t)} is the vector containing the gear forces and moments resulting from the

relative rotation between the two mating gears and {Fti (t)} is the vector containing gear

forces and moments due to the translational motion between the two gears.

In order to calculate the transient and steady state dynamics of the system, the

coupled rotor and casing equations of motion must be solved simultaneously. To

_e the computational effort, the modal transformation [11,12] procedure is applied

to reduce the degrees of freedom of the global equations of motion. Using m undamped

mode shapes of the ith rotor system [_t, d_2, q_3, ..., _ ] and mc undamped mode

shapes of the gearbox [_cl, ¢c2, q_c3,..., qb_c ], the rotor displacement for the ith rotor can

be written as

m

{w,}:X (3.5)
j=l

and, similarly, the gearbox displacements as

{W_}= [qt_]{A_} (3.6)
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where {Ai ) and {A_ } are the modal time functions of the ith rotor and the gearbox

respectively. Using the expansion in equation (3.5), the equations of motion for the ith

rotor in equation (3.1) can be written as

[MI¢,1{_}+[K,I_,]{A,I={_,,(,)}+{r;(,)}+(r.,(,)} (3.-/)

Premultiplyingby [6i]a"and usingtheorthogonalityconditionsofthemode shapes[21],

theithrotorequationsofmotion canbe writtenas

where [ Ax ] is the diagonal matrix of the squares of the natural fiequeneies of the system.

For the gearbox system, a similar transformation is carried out and equation(3_2)

can be written as

{)ic}+ [A2_Ac}:{_,} (3.9)

For the system ofk rotors, equation (3.8) can be repeated k times and solved with

the casing equation (3.9) simultaneously for the modal accelerations {Ai } and {A, }. A

numerical integration scheme is used to integrate the accelerations to obtain velocities

and displacements at each time step for transient calculations [11].

3.3. Vibration Signature Analysis

3.3.1 Joint Time-Frequency Analysis

To examine the vibration signal, a joint time-frequency analysis method was

chosen. This approach was chosen because of the large amount of information

represented in the joint time-frequency results which can not be represented separately in

either the time domain or the frequency domain. The joint time-frequency analysis will

H

w
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provide an instantaneous frequency spectrum of the system at every instant of the

revolution of the pinion while a Fourier Transform can only provide the average vibration

spectrum of the signal obtained during one complete revolution. In other words, the

time-changing spectral density from the joint time-fl_quency spectra will provide

information concerning the frequency distribution concentrated at that instant around the

excited instantaneous frequency which cannot be obtained in a regular vibration

frequency spectrum. The following is a description of the joint time-frequency analysis

method.

To examine the vibration signal in a joint time-frequency domain, the Wigner-

Ville method [14,15] was used in this rese,srch. While the Fast Fourier Transform (FFT)

technique can provide the spectral contents of the time signal, it cannot distinguish time

phase change during a complete cycle of operation. In other words, it assumes that the

time signals are repeatable for each time data acquisition window without considering the

effects of any magnitude and phase changes during the sampling period. The Wigner-

Ville distribution will provide an interactive relationship between time and frequency

during the period of the time data window. The comprehensive representation of the

vibration signal using the WVD method is the primary reason that it was used to compare

the predicted and experimental vibration results. The WVD (Wigner-Ville Distribution),

in a Discrete form, can be written as:

L

W,, (nT, f) = 2T _, x(nT + iT)x" (nT - iT). e-J4'¢_ (3.1 O)
lffi-L

where

r

_i a
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W(t,f) = the Wigner-ViUe distribution in both the time domain t and frequency domain f,

x(t) = the time signal

T = the sampling interval

L = the length of time data used in the transform

To allow sampling at the Nyquist rate and eliminate the concentration of ener_

around the frequency origin due to the cross product between negative and positive

frequency [14,15], the analytic signal was used in evaluating the WVD. The analytic

signal s(t) is defined as

s(t)= x(t)+ jH[x(t)] (3.11)

where H[x(t)] is the Hilber transform ofx(t). However, an alternative approach can be

used to calculate the analytic signal using the frequency domain definition. The analytic

signal s(t) can be evaluated by calculating the FFr of the time signal x(t), then setting the

negative frequency spectrum to zero. The analytic signal can be obtained by evaluating

the inverse FFT of the spectrum.

To simplify the computational effort, the WVD can be evaluated using a standard

FFT algorithm. Adopting the convention that the sampling period is normalized to unity,

it is necessary only to evaluate the WVD at time zero. Hence

L -j4_

W,(O,f) = 2_"k(i)e (3.12)
i=-L

where k (i) = s(i) s" (i),

In order to avoid a repetition in the time domain WVD, a weighting function [28]

was added to the time data before the evaluation process. Such a process may decrease

w
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the resolution of the distribution, but it will eliminate the repetition of peaks in the time

domain and the interpretation of the result is substantially easier.

=--

W

.

3.3.2 Frequency Domain Analysis

The frequency spectrum is found by applying a Discrete Fourier Transform (DFT)

on the time averaged signal x(t), such that the spectral components me

X(k) = T__ t_oX(t)exp(.- i2_ik )

where

x(t) = time domain signal

X(k)= frequency domain signal

T = sampling time interval

N = number of data points

The frequency components were examined in the frequency domain.

(3.13)

3.4. Discussions of Results

In order to examine the sensitivity of the system vibrations on gear tooth

imperfections, the vibrations in gear systems due to various levels of gear wear were

analyzed. The basic parameters used in this analysis are the magnitude and geometry of

tooth profile deviation and the number of teeth involved.

The model ofrotor-gesr system used in this analysis is shown in Figure 15. The

number of teeth in the gear model is 28. And the vibration analysis of this system under

various levels of gearwear aregivenasfollows,
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First, surface pitting on a single tooth is used with the magnitude of the tip relief

given in Table 3. The damaged tooth is the 12th tooth from the reference point on the

Table HI Magnitude of the Maximum Tip Relief

1st tooth

2rid tooth

3rd tooth

caseI

1.e-5 2.e-5

0 0

0 0

4.e-5

0

0

case II

4.e-5 4.e-5 4,e-5

l,e-5 2,e-5 4,e-5

0 0 0

casein

4,e-5 4,e-5 4,e-5

4,_-5 4.o-5 4,_-5

1,e-5 2.e-5 4,e-5

r_

w

H

_J

Figure 16 - 18 show the WVD, the time signal (to the left of the WVD), and the

frequency spectra (below the WVD) of the vibrations of the corresponding system. In

Figure 16, a small cross pattern had developed in the WVD around the 154 degrees

location which is the exact mesh time ofthe 12th tooth, A small phase shiit is also

detected in the time signal at that location. As the damage of the tooth becomes more

severe (increase in the magnitude of the profile modification), the cross pattern is more

obvious and the phase shift is getting more pronounced, as shown in Figure 17 and Figure

18.

Secondly, the dynamics involved with damage on two consecutive teeth (12th and

13th) was simulated, During this simulation the wear on the first tooth (12th) is kept

constant while the amounts of wear on the second tooth (13th) inoreased similarly to that

given in Table 3,
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Figure 19 - 21 show the WVD, the time signal, and the frequency spectra of the

vibrations of a corresponding system with damage on two consecutive teeth. When the

damage on the tooth is increased, the cross pattern shown in the WVD is not as sharp as

those with single tooth damaged, However the sideband components at the tooth pass

frequency increase with increasing damage, as seen in the frequency spectra of Figures

19- 2 l. In addition, the once per revolution low fiequency component increases along

with its sidebands. As seen in the time domain, the phase shift becomes more

pronounced als,o

Thirdly, the dynamics involved in three consecutiveteeth (12th, 13th and 14th)

were examined, In this case, the wear/damage in the first and the secondteeth are kept

constant, the amounts of wear in the third tooth increase similarly to those given in Table

3,

Figure 22 - 24 show the WVD, the time signal, and frequency spectra of the

vibrations of the corresponding system with three consecutive teeth damaged. The

frequency components nearthe toothpassfrequency show very small changes from those

with two consecutive teeth damaged, Figure 19 -21. However, the frequency components

near the shaft frequency has acquired a substantial increase with large sidebands.

Based on the above discussion, one can generalize the effects of single and

multiple consecutive tooth damage on the vibrations of a gear transmission system.

Using the WVD technique, 3-D image pattem recognition, procedures can be developed

to identify various combinations and levels of tooth damage.

=--
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(two consecutive teeth are damaged, tip relief is 4.0*10"Sin, 1.0"10 "sin respectively).
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3.5, Summary

A numerical procedure has been developed to simulate the vibration in a gear

transmission system with effects of gear tooth damage due to wear and pitting. The work

presented in this chapter can be summarized as follows:

1) A modal synthesis methodology has been used to simulate the dynamics of gear

transmission systems, The computational efforts has been geatly reduced by modal

transformation.

2) The gear mesh model developed to simulate the gear tooth damage due to wear and

pitting can easily be incorporated into the global transmission system for dynam/cs

predictions.

3) The Wigner-Villle distribution (WVD) method provides a comprehensive

representation of the vibration signal. It was successfully used to verify the analytical

model,

4) The WVD method provides detailed information. Hence, using the time averaging

technique, frequency spectrum analysis, and the WVD, a signature analysis scheme

can be developed to examine and characterize the vibration signal of the gear system.

5) A parametric study of the effects on the vibration signal due to various degrees of

pitting and wear damage, could provide a comprehensive database for gear fault

detection and damage estimation research.
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CHAPTER 4

VIBRATION SIGNATURE ANALYSIS OF

A FAULTED GEAR TRANSMISSION SYSTEM

w

4.1 Objective

The objective of this chapter is to examine and compare the three different

approaches to detect gear wear and failure. The fiequency domain analysis is based on the

spectral display from a Fast Fourier Transform algorithm. The time domain analysis

includes the time synchronous averaged signal, and the statistical based techniques FM0,

FM4, NA4*, and NB4* applied to the time averaged signal. The joint time-frequency

analysis uses the WVD on the vibration data with special windowing techniques. All of the

analysis methods are applied to the vibration data of a failure from the spiral bevel gear

fatigue test rig in the NASA Lewis Research Center. Results from the various methods are

compared and general conclusions are drawn from the results.

7_

= :

4.2 Technical Approach

As discussed in the previous section, three major methodologies: A) the frequency domain

approach, B) the time domain approach, and C) the joint time-frequency approach are used

in this study. The following is a description of the throe methodologies:

(A) Frequency Domain Techniques

The frequency spectrum is found by applying a discrete FFT on the time averaged signal

x(t), such that the spectral components am
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X(k) = T_-"x(t) exp(j2zik)
i=o N (4.1)

where x(t) = time domain signal, X0c) = frequency domain signal, T= sampling time

interval, N= number of data points. The frequency components arc examined in the

frequency domain and compared with those obtained at various stages of the fault

development in the spiral bevel pinion.

w

. =

= :

(B) Time Domain Techniques

Four different time domain techniques for early detection of gear tooth damage am used in

this study for evaluation and comparison. All of the time domain techniques are applied to

the vibration signal after it has been time synchronously averaged. These techniques are:

FM0, FM4, NA4*, and NB4*. These parameters are defined as follows:

FM0146] is a course fault detection parameter that compares the maximum peak to peak

amplitude to the sum of the mesh frequencies and its harmonies

PP
FM0 -

_--'_A(fi)
i=t (4,2)

where PP-=-maximum peak to peak amplitude in signal, A(fi_ amplitude at mesh

frequency and harmonics, n= total number of harmonies in frequency range, and FM4146]

is an isolated fault detection parameter, and is given by the normalized Imrtosis, of the

resulting difference signal as

FM4=N _-_(d_ -d) 4 / (d_-d): (4.3)
_=l

w_.
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where d(t) = A(t) - R(t), -d 2= mean value ofd(t), A(t) = original time synchronous signal,

P.(t) = regular meshing components plus their first order side bands, and N = total number

of data points in the time signal.

NA4"[45-48] is a general fault detection parameter with trending capabilities. A

residual signal is constructed by removing regular meshing components from the time

averaged signal. For NA4, the first order sidebands stay in the residual signal and the fourth

statistical moment of the residual signal is then divided by the averaged variance of the

residual signal, raised to the second power. The average variance is the mean value of the

variance of all previous records in the run ensemble. This allows HA4 to compare the

current gear vibration with the baseline of the system under nominal conditions. HA4 is

given by the quasi-normalized kurtosis equation shown below:.

t_ rlN[- N ]}2INIA411it_:_%l #_1 (/",--r')4 /imj_=lL/__l (rfj -_ )2
(4.4)

w

where r: residual signal, _ 3= mean value of residual signal. N = total number of data

points, in one time record, i= data point number in time record, j= time record number, and

M=curtr_t time record number in run ensemble.

An enhancement to this parameter is given by HA4*, in which the value of the

averaged variance is "locked" when the instantaneous variance exceeds a predetermined

value.[47] This provides NA4 with enhanced trending capabilities, in which the kurtosis of

the current signal is compared to the variance of the locked baseline signal under nominal

conditions.

m



- 6O

NB4 is another parameter similar to NA4 that also uses the quasi-nonnalized

kurtosis given in equation (4.4). The major difference is that instead of using a residual

signal, NB4 uses the envelope of the signal banlmssed about the mesh frequency. Again, as

with NA4*, NB4* is an enhancement to the NB4 parameter, in which the value ofthe

average variance is "locked*' when the instantaneous variance exceeds a pre-determined

value. The equation for NB4* is given below:

L

w

w

w.o

i

and

s(t) = magnitude of {b(t) + i {H[b(t)]} } (4.6)

where b(t)-= time averaged signal bandpassed filtered about the meshing frequency,

H[b(t)]--the HUbert Transform of b(t), N = total number of data points in one time record, i=

data point number in time record, j-- time record number, and M= current time record

number in run ensemble.

(C) Joint Time-Fr_ueno¥ Technique

To examine the vibration signal in a joint time-f_equenoy domain, the Wigner-ViUe

method[14-18,41,49] is used in this study. While the FFT technique (eq. 4.1) can provide

the spectral contents of the time signal, it cannot distinguish time phase change during a

complete cycle of operation. In other words, it assumes that the time signals are repeatable

for each time data acquisition window without considering the effects of any magnitude and

phase changes during the sampling period. The Wigner-Ville distribution will provide an
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interactive relationship between time and frequency during the period of the time data

window. The WVD (Wigner-ViU¢ Distribution) can be written as:

® r x*(t- r e.J2_r_d
W(t, f) = _ x(t + _) _-) _"

"® (4.7)

To allow sampling at the Nyquist rate and eliminate the concentration of energy around the

frequency origin due to the cross product between negative and positive frequenoy,[ 14,15]

the analytic signal was used in evaluating the WVD. The analytic signal s(t) is defined as

s(t) = x(t) + jH[x(t)]

where

(4.8)

I-I[x(t)] ffithe Hilbert transform ofx(t) defined by:.

lfx(O d_
H[x(t)] = rc._ t-_

(4.9)

However, an alternative approach can be used to calculate the analytic signal using the

frequency domain definition. The analytic signal s(t) can be evaluated by calculating the

FFT of the time signal x(t), then setting the negative frequency spectn_ to zero. The

analytic signal can be obtained by evaluating the inverse FFT of the st_trum. To simplify

the computational effort, the WVD can be evaluated using a standard FFT algorithm.

Adopting the convention that the sampling period is normalized to unity, equation (4.7) can

be rewritten as

L

Wx (n, f) = 2 _ x(n+ i) x* (11- i) . e "j4_rti

(4.10)

As for the continuous time case, it is necessary only to evaluate the WVD at time zero.
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Hence

L

W,(O, f) = 2)-':k(i) e"j4'_n

i=-L (4.11)

where k(i) = s(i) s* (-i). Equation (4.12) can be evaluated using the discrete FFT algorithm.

In order to avoid a repetition in the time domain WVD, a weighting function[18] is added

to the time data before the evaluation process. Such a process may deca'ease the resolution

of the distribution) but it will eliminate the repetition of peaks in the time domain and the

interpretation of the result will be substantially easier.

4.3 Description of Experimental Procedure

The fatigue damage on the test pinion shown in Figures 25 to 32 was obtained using

the spiral bevel gear fatigue test rig illustrated in figure 33, at the NASA Lewis Research

Center. The primary purpose of this rig is to study the effects of gear tooth design, gear

materials, and lubrication types on the fatigue strength of aircraft quality gears.[50] Because

spiral bevel gears are used extensively in helicopter transmissions to transfer power between

nonparallel intersecting shafts, the use of this fatigue rig for diagnostic studies is extremely

practical. Vibration data from an accelerometer mounted on the pinion shaft beating

housing was captured using a personal computer with an analog to digital conversion board

and anti-aliasing filter. The 12-tooth test pinion, and the 36-tooth gear have:, 0.5141 in

pitch, 35 degree spiral angle, 1 in. face width, 90 degree shaft angle, and 22.5 degree

pressure angle. The pinion transmits 720 hp at nominal speed of 14,400 rpm. The test rig

was started and mopped several times for gear damage inspection, The test was ended at
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17.79operational hours when a broken portion of a tooth was found visually during one of

the shutdowns.

w

?

4.4. Discussions of Results

A series of pictures showing the deterioration of the pinion teeth at various stages of

the test ate illustrated in figures 25 to 32. In figure 1 the initiation of a small pit on one of

the pinion teeth during the first shutdown, at about five and a halt'hour into the test is

shown. As the test progressed, the rig was shut down seven more times to examine the

severity of the pitting and its relationship with the corresponding vibrations. Figures 26 to

28 show the increase of the damaged area at the pinion tcoth as the elapsed time increased

to 6.55, 8.55, and 10.03 hr respectively. Note that in figure 29, as the elapsed time increased

to 12 bx, the damage of the pinion tooth increased to 75 percent oftho tooth surface. At this

stage, pitting also initiated on the adjacent tooth and continued to grow as the time increased

to 14..53 hr, figure 30. At 16.16 hr, the damage has grown to three adjacent teeth as shown

in figure 3 l. The test was terminated when a bree,kage is detected on one of the three

heavily pitted teeth at 17.79 hr, as shown in fig',ge 32.

Figure 34 depicts the running speed of the test rig during various stage.s of the

experiment. Note that there is some fluctuations present in the running speed after each

shutdown, with a magnitude of approximately 6 percent about the nominal pinion speed of

14,400 rpm. There is a sharp change in speed at approximately 8.75 hr. Thcs_ variations in

speed create a substantial effect on the .Abration signal, which is amplified in the HA4 (fig.

37), NB4 (fig. 38), and the WVD (fig. 45) analysis.

o. ig .

L_
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Figure 25. Photograph of
pinion damage at 5.50 hr.

Figure 26. Photograph of

pinion damage at 6.55 hr.
Figure 27. Photograph of
pinion damage at 8.55 hr.

F

Figure 28. Photograph of

pinion damage at 10.03 hr.
Figure 29. Photograph of

pinion damage at 12.03 hr.

Figure 30. Photograph of

pinion damage at 14.53 hr.
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L
Figure 31. Photograph of pinion damage at
16.16 hr.

Figure 32. Photograph of pinion damage at
17.79 hr.

Amc:%ro:e_c_aro__ _
(measuring vertical ___

accelerations of I 1--'--_ ./'_"_- _f_l

bearing housing) / /.-_ ,_-'_"_ _" ___',_

Figure 33. Spiral bevel gear rig at NASA Lewis Research Center.

w
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Figure 35 shows the results of the FM0 analysis. As seen from the figure, FIVl0 shows

only moderate changes as the damage starts and progresses. It does not provide any

indication as the damages extends to the adjacent teeth, resulting in pinion tooth fracture.

The majority of the variations in the FM0 parameter are most probably due to the speed

changes expefieac, ed during the test.

Results from the FM4 parameter, as seen in figure 36, shows a possible reaction as the

pitting started to occur, however, it does not provide any coherent indication of the severity

of the pitting as the damage increased. In addition, it does not provide any information to

distinguish the pitting of a single or multiple teeth.

Results from NA4 and NA4* are illustrated in figure 37. It is obvious from the figure

that both NA4 and NA4* provide a very good indication of the pitting development on the

pinion tooth. The magnitude of the parameter increases to a nondimemional value of 7 after

shutdown #2 at 6.55 hr, and further to a value of 17 when the pitting covers 75 percent of

the tooth surface at 8.5 hr. As expected, the "locked" denominator in NA4* provides a more

robust indication as the pitting progresses.[45,47] Again, both parameters are very sensitive

to the speed variations, especially aider shutdown #3 and #6.

The NB4 and NB4* parameters, as shown in figure 38, show a very similar trend to

those of NA4 and NA4*, with a more robust indication to the severity of the damage.

However, both NA4 and NB4 did not provide any type of indication as the damage spread

to other t_th, and finally as tooth fracture occurred.
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Figure 39 shows a WVD (and cones_nding intensity scale) and below the WVD the

frequency spectrum (from FFT analysis) of a uniform sine wave signal shown at the leR

side of the figure. Note that only the frequency component of the input frequency is detected

by both the frequency domain analysis and the joint time-frequency distribution. The WVD

does not exhibit any changes during the 1 cycle (0 to 360 degrees) rotation of the shaft.

When a short term amplitude and phase change is added to the system, as shown in figure

40, the frequency spectrum remains virtually unchanged. The WVD shows a dramatic

change of the energy distribution f_attem at the location where the change occurs. The

lighter shades of the distribution display indicates a smaller vibration amplitude,, which is

shown by the time signal at the lei_ side of the figure. Such an effect could be possibly

caused by a chipped or cracked tooth. Figure 41 shows the effects of a short term amplitude

increase in the time signal to simulate vibrations caused by gear tooth surface damage. Note

that the frequency spectrum remains the same showing only the component of the exciting

frequency while the WVD again provides a good indication of the amplitude increase by the

widening of the shaded area to a diamond shape at the corresponding "damaged" tooth

location. Figure 42 shows the effects of a time decaying short term amplitude and phase

change signal. The WVD shows a half diamond shape of shaded area, similar to that of

figure 40, at the location where the amplitude and phase changes are presented. As seen in

figure 42, the frequency spectrum gives very little indication of the signal change.
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Figures 43 to 50 show the WVD and frequency spectra of the spiral bevel pinion

vibration at various stages of damage, corresponding to the photographs given in figures 25

to 32. Figure 43 shows the occurrence of the initial pitting at around 200 degrees from the

triggering point of the gear, at 5.5 hr, of running time. At 6.55 hr, the pitting on the tooth

surface progressed to a more noticeable stage, as shown in figure 26, the WVD pattern,

figure 44, begins to adopt those of a short term amplitude and phase change as illustrated in

figure 42. At this stage, a Cross pattern appeared in the joint time frequency domain

(WVD) as the damaged gear tooth produced a change in the fiequency components other

than the mesh frequency. Due to the speed increase at 8.55 hr, the overall WVD amplitude

increases substantially as shown in figure 45. At the running time of 10.03 hr, the cone-

spending WVD in figure 46 shows the initiation of a cross pattern as surface pitting in the

damaged tooth becomes more pronounced which can also be evidenced from the

photograph of the pinion gear in figure 28, This phenomenon is also evident in the

frequency spectrum with the existence ofsideband components. At 12.03 hr, when the

pitting on the pinion tooth has extended to about 75 percent ofthe tooth surface as shown in

figure 29, the WVD pattern exhibits a solid cross pattern extending over the mesh frequency

and several of its adjacent sidebands. The high concentration in the WVD energy and the

initiation era second cross pattern at 14.53 hr, figure 48, shows the advancement ofthe

pitting process on second tooth, as illustrated in figure 30. This is finlher confirmed by the

large amplitude of sideband component(above mesh) in the frequency spectrum. At 16.16

hr, as seen in figure 49, the WVD pattern changes, showing more advanced damage pattern

similar to the multiples of the decay of a single short term amplitude increase and phase

change demonstrated in figure 42. Such phenomenon is due to the pitting of three

===
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consecutive teeth in the pinion gear as shown in the picture given in figure 31. The

frequency spectrum in figure 49 shows a substantial amplitudes increase in the sideband

components. The discontinuity of the WVD at the mesh frequency, shown in figure 50,

similar to the example shown in figure 16 due to the short term phase change, is probably

the result of the instantaneous phase change mused by the fractured tooth, as illustrated in

figure 32. The two cross patterns in the WVD is very distinct as the effects ofpitting at the

teeth adjacent to the fracture tooth become more pronounced. Note, also that, as given in

figure 50, the amplitude of the sideband frequencies(above and below the mesh frequency)

increase substantially.
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4,5 Conclusions

Based on the results of the application of the various aforementioned methods, the

following conclusions can be made:

1) The FMO parameter shows only moderate changesas the damage startsand progresses.

It also fails to indicate the fractureof the pinion tooth.

2) The FM4 parameter shows a possiblereactionto the startof the pitting process,

however, no coherent indication is provided for the growth and severity of the pit.

3) The NA4* and NB4* parameters show good reactions to the initial pitting damage and

very nice indications for the growth and severity of the pitting damage. However their

indications for the tooth fi'acmreis somewhatunclear.

4) The WVD provides vital information concerning both the svverity and the location of

the pitting process in the gear system.
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5) The fracture of the gear tooth and its exact location can be pinpointed using the WVD

technique. However a machine vibration signature database is required to interpret the

resulting WVD.

6) The occurrence and the severity of gear tooth failure can be reliably detected using a

combination of the time averaging, the frequency analysis, and the WVD techniques.

w
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CHAPTER 5

ANALYSIS OF THE EFFECTS OF SURFACE PITTING AND WEAR ON THE

VIBRATIONS OF A GEAR TRANSMISSION SYSTEM

= J

r

3

f ,

w

5.1 Objective

Vibration signature analysis methodologies are being developed to non-intrusively

examine the health and wear of goat transmission systems. Using spectral analysis, the amplitude

of the frequency spectrum of the measured vibration signal is calculated and displayed in a

continuous manner. However, the spectral analysis technique is difficult to apply in a highly

complex system where the large number of spectral lines often makes it difficult to detect

significant changes in the spectrum. Another methodology is the joint time-frequency approach

which applies the Wigner-Ville distribution (WVD) [14-16] on the time vibration signal of the

system. Unlike the regular Fourier transform process, the WVD provides an instantaneous

frequency spectrum of the system at any instant throughout the sampling period (while FFT

provides a averaged frequency spectrum of the total sampling period). The spectral density of the

fundamental exciting frequency and its sidebands change as the shaR rotates through a complete

revolution, Some success has been achieved in applying the WVD concept in the health

monitoring of gear tmmmission systems[16-18,26]. However, a complete vibration signature

databaseisneededfordevelopmentof an effectivepatternrecognitionscheme,In orderto

populatesuchdatabases,thedevelopmentofan accurateanalyticalproceduretopredict

vibrations in gear systems due to wear and fatigue failure is necessary.

The objective of this paper is to develop a comprehensive procedure to simulate and

analyze the vibration in a gear transmission system with effects of surface pitting and wear of the
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gearteethundernormaloperatingconditions. The effects of changes in magnitude and phase of

the mesh stiffness at one particular tooth or a number of consecutive teeth were evaluated in

order to simulate the effects of surface pitting and wear. The effects of these localized changes in

the gear mesh were incorporated into each gear-rotor model for the dynamic

simulation[11,51,52]. The dynamics of each gear-rotor system were coupled with each other

through the gear mesh interacting forces. The coupling between the rotors and the casing

structure were generated through the bearing support forces. The global vibrations of the system

were evaluated by solving the transient dynamics of each rotor system simultaneously with the

vibration of the casing. In order to minimize the computational effort, the number of

degrees-of-freedom of the system were reduced by using a modal synthesis procedure[11,51].

The global transient dynam/cs of the overall transmission system were calculated in the modal

coordinates where the modal accelerations were integrated numerically to obtain the velocities

and displacements at each time step. An FFT procedure was used to transform the transient

vibrations into the frequency domain for signature analysis. In addition, the Wigner-Ville

distribution[14--I8,26,53] was also used to examine the gear vibrations in the joint

6me-frequency domain for vibration pattern recognition. Experimental vibration results obtained

from a gear fatigue test rig at NASA Lewis Research Center[48] were used to verify the

analyti procedure,

5.2. Solution Procedures

5.2.1 Dynamics of the Gear-Shaft Configuration and the Gearbox System
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The dynamics of the ith individual gear-shaR system can be evaluated through the

equations of motion for the vibrations of a individual rotor-bearing-gear system as shown in

Figure 51[11,51], given in matrix form, as

{M] {_,} + { K,] {W,}={ Fb/O} + { F_(O} + {FJO} (5.1)

where [M] and ['Ks]are respectively the mass and shaft stiffness matrices of the rotor, {Wi} is the

general displacement vector of the ith rotor in the its local coordinate system, and, {F_(t)},

{F_(t)}, and {F_(t)} are respectively the force vectors acting on the ith rotor system due to

hearingforces,gearmesh interactions,and mass-imbalances.In thismodel,thedynamics

betweenthegearboxand therotorarecoupledthroughthebearingforces,which areevaluated

by therelativemotionbetweentherotorand thegearbox.The interactionsbetweentheeach

individualrotorarecoupledthroughthegearforcesgeneratedby therelativemotionofthetwo

matinggearsatthemesh point.

The equationsof motionofthegearboxwithp rotorsystemscan be expressed

as

p

[Mj {(("c} + [KJ {W_} = _ [T_,] {Fb,(O} (5.2)
lml

where [Ta]representsthecoordinatetransformationbetweentheithrotorand thegearbox.

5.2.2EvaluationofBearingForces

The bearingforces{Fb_(t)}fortheithrotorcanbe evaluatedas
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{F_,(OI = [C_,] ({w,I - [_,o1{W_)J + [KM ({W,I - [V,c] (wc,I) (5.3)

where [C_. and [K_,_]are respectively the damping and stiffness of the bearing, [TJ is the

coordinate transformation matrix for the gearbox with respect to the ith rotor, and W_ arc the

easing displacements at the rotor locations.

8O

5.2.3 Evaluation of Gear Forces

The gear forces generated from the gear mesh interaction[54] can be wriUe,a as

{F_(t)} = {F,,(t)} + {Fn(O} (5.4)

where {F.(t)} is the vector containing the gear forces and moments resulting from the relative

rotation between the two mating gears and {F_(t)} is the vector containing gear forces and

moments due to the translational motion between the two gears, the forces and the torsional

moments due to relative rotation between the kth location of the ith rotor and the lth loation of

the jth rotor, can be respectively expressed[54,10] as

{F,k(t)} = :D_/f K_j} ((R,kO_,) - (Rj_Ojt)) (5.5)

{Mnk(t)} = R, {Dr/{Kvj ((R,kO_) - (Rjt-Oj_)) (5.6)

where R_. and 0_ are the radius and angular displacements in the ith-rotor gear localized gear

rotational coordinates, _jt 7 and _j_ 8 are radius and angular displacements of the lth location at

the jth rotor in the ith-rotor localized gear rotational coordinates, _ is the gear mesh stiffness

matrix between the ith and jth rotors, and [D_] is a diagonalized matrix transforming the



localizedgearcoordinatesinto the ith rotor coordinatesystem.In addition,thetranslational

forcescanberepresentedby
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{F,_k(t)}= [D_] {K_:)r [D_ f t ([Tj {Wit}-{W,k]) (5.7)

where [T_ is the transformation matrix between the ith and jth rotor coordinates. For a rotor

with one gear mesh, the gear force vector {F_(t)) defined by equation (5.4) will have non-zero

elements only at the gear location, i.e., the kth station. As the gear rotams, the stiffness of the

gear mesh changes as the gear mesh progresses from single to multiple tooth contact. This

cycling effect of the gear mesh stiffness is the main source for the mesh frequency excitation in

the system.

5.2.4 Modal Synthesis

In order to calculate the transient and steady state dynamics of the system, the coupled

rotor and casing equations of motion must be solved simultaneously. To _ the

computationaleffort,themodal transformation[11,51]procedurewillbe appliedtO l_:lUce the

degreesoffreedomof theglobalequationsof motion.Usingm undamped mode shapesof theith

rotor system [_,_, q_a,cb_, ..., q_] and m_ undamped mode shapes of the gearbox [_,, _c_, _, ...,

_], the rotor displacement for tlm ith rotor can be written as
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(5.8)

or

! :I

!

{w,] = [_,] (a,]

and, similarly, the gearbox displacements as

(s.9)

{wd = [_o][Ad (S.10)

wbem {&} and{A_}arcthemodaltimefunctionsoftbeithrotorandthegearboxresistively.

Usingtheexpansioninequation(8),theequationsofmotionfortbeithrotorinequation(5.I)

canbewrittenas

[M] [f_,] {_,} + [K,] [4,] [:4,1 = {Fbi(t)} + {F_(t)} + {F.,(t)] (5.11)

_z

L_

=.=

L_

Premultiplyingby [_jzandusingtheorthogonalityconditionsofthemode shapes[lI],theith

rotor equations of motion can be written as

{:_,] + [__] {A,] = C:,,] + C:_} + _.,] (5.12)

where [^2] is tbe diagonal matrix of the squares of the natural fn_encies of tbe system, and

_,J = [¢,f (F_,(O] (5.13)

=.._=
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_} = f_,f {F_(O} (5.14)

L

{-:._} = :_,f {F,,(O} (5.15)

For the gearbox system, a similar transformation is carried OUt as ¢q_tion (2) can b¢ wriU_ as

: ±

- .

{Ac} + {_] {Ac} = {-FJ (5.16)

For a system ofk rotors, equation (5.12) can be repeated k times and solved with the easing

equation (5.16) simultaneously for the modal accelerations {_} and {A¢}. A numerical

integration scheme is used to integrate the accelerations to obtain velocities and displacements at

eachtimestepfortransientcalculatiom[II].

5.3. Signature Analysis of Vibration Signal

5.3.1 Frequency Domain Analysis

The frequency spectrum analysis is used by applying a discrete Fourier Transform on the

average time signal x(t) such that the spectral components are

u-z ._.-j 2 zik .
N X(k) = T _._ x(t) exp(---_] 0.17)
___. i_0

::SZ
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where x(t) is the time averaged of the vibration signal W(t) and T is the sampling interval. The

frequency components are examined in the frequency domain and compared with those ob_dned

at various stages of the fault development in the experimental gear test rig,

w

L

L_

L

L_J

_J

U
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_- 3.2JointTime-FrequencyAnalysis:The Wigner-VilleDistribution

To examine thevibrationsignalina jointtime-frequencydomain, theWigner-Ville

method[14-16]isused inthisstudy.The Wigner-ViUe distributionwillprovidean inter-domain

relationshipbetween timeand frequencyduringtheperiodofthetimedatawindow. The WVD

(Wigncr-VilleDistribution)canbe writtenas:

WV(t,J) = x(t + _) x" (t- -_) ej2_'_ dr (5.18)
-00

or in a discrete form as

L

WV_ (nT,./) = 2T _ x(nT + iT) x'(nT- iT). e "/4_ (5.19)
i=-L

where WV(t, f) is the Wigncr-Ville distribution in both the time domain t and the fnxlUency

domain f. To allow sampling at the Nyquist rate and eliminate the concentration of energy

around the frequency origindue to the cross product betweennegative and positive

frequency[14-16], the analytic signal was used in evaluating the WVD. The analytic signal s(t)

is defined as

s(t) = x(t) + jH[x(t)]

Where H[x(t)] is the Hilbcrttransform of x(t) defined by :

(5.2O)
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H[x(t)]- I _ x(4) d4.o 74  5.21)
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However, an alternative approach can be used to calculate the analytic signal by the fi'equency

domain definition.The analyticsignal s(t) can be evaluatedby calculatingtheFFT of thetime

signalx(t),thensettingthenegativefrequencyspectrumtozero.The analyticsignalcanthenbe

obtainedby evaluatingtheinverseFFT ofthespectrum.To simplifythecomputationaleffort,

theWVD canbe evaluatedusinga standardFFT algorithm.Adoptingtheconventionthatthe

samplingperiodisnormalizedtounity,Equation(5.19)can be rewrittenas

L

" iwr_ (n,/) = 2 _ x(n + i) x (n-9. ej'_ (5.22)

As forthecontinuoustimecase,itisnecessaryonlytoevaluatetheWVD attimezero.Hence

L

WVx (O,J') = 2 _ k(i) e44'¢ (5.23)
iffi-L

where k(i) = s(i) s* (-i). Equation (23) can be evaluated using the discrete FFr algorithm.

In order to avoid a repetition in the time domain WVD, a weighting function[26] is added

to the time data before the evaluation process. Such process may decrease the resolution of the

distribution, but it will eliminate the repetition of peaks in the time domain, and, thus the

interpretation of the result will be substantiallyeasier.

w m

m

5.4.Descriptionof ExperimentalStudy

The experimentwas performedon thespiralbevelgearfatiguetest rig [48],as illustrated

inFigure52,attheNASA Lewis ResearchCenter.The primarypurposeof thisfigistostudy

theeffectsofgeartoothdesign,gearmaterials,and lubricantson thefatiguestrengthof ahr.raR
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quality gears. Because spiral bevel gears are used extensively in helicopter transmissions to

transfer power between nonparallel intersecdng shafts,theuseofthisfatigue rig fordiagnostic

studiesispractical.Vibrationdatafrom an accclemmetermounted on thepinionshaftbearing

housingwas capturedby an analogtodigitalconversionboard.The 12-toothtestpinion,and the

36-toothgearhave a 35 degreespiralangle,a I in.facewith,a 90 degreeshaftangle,and 22.5

degreepressureangle.The piniontransmits720 hp ata nominalspeedof 14,400rpm. The test

rigwas stoppedseveraltimesduringthetestforgeardamage inspection.The testwas concluded

at17.8operationalhourswhen a breakentoothwas detectedvisuallyduringone ofthe

shutdowns.

Pictures of tooth damage on the pinion at various stages in the test are shown in Figure

53. At the first rig shut-down, at about 5.5 hours into the test, a small pit was observed on one

of the teeth on the test pinion, as illustrated in Figure 53A. The test was stopped again at

approximately 12 hours and the pitted area spread to cover approximately 75% of the face of the

pinion tooth, as seen in Figure 53B. In addition, pitting started to appear on the adjacent teeth.

Figure 53B shows the pinion at the end of the test, at 17.8 hours. It was found that one of the

three heavily pitted pinion teeth had experienced a tooth breakage, losing one third of the tooth,

asshown in the figure.

=

= :

5.5.Discussionsof Results

To studytheeffectsofgeartoothpittingand wear on thedynamicsoftherotorsystem,

the numerical simulationproceduredescribed abovewas usedto model thevibrationsof the

piniongearinthetest rig. During the experimentalstudy,verticaldirectionvibrationsignals



w

87

Figure 51. Schematic of the rotor-gear bearing
system.

Figure 52. Spiral bevel gear rig at NASA Lewis
Research Center.

Figure 53. Photograph of the damaged pinion teeth (a) 5'5_0 hr' (b) 12.03 hr. (c) 17.79 hr.
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Figure 54. Stiffness changes in the gear mesh model.
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from the pinion gear are time synchronously averaged for spectral analysis and analysis using the

joint time-frequency distribution(WVD). In order to perform an accurate comparison, the

averaged time signal from the vertical vibration of the pinion gear is also generated using the

numerical model. During these simulations, approximate gear mesh stiffness models are

developed to simulated the effects of wear and pitting of the pinion tooth on the dymmics of the

system.

As it has been established, the changes due to gear tooth wear or failure can be

represented by the amplitude and phase changes in vibration, which, in turn, can be represented

by magnitude and phase changes in mesh stiffness[17,18]. To demonstrate the effects of mesh

stiffness change on gear vibration, the variation of the mesh stiffness model used for this study is

given in Fig 54. The "undamaged" configuration of the mesh stiffness is given by 0 degree phase

change(Fig. S4A), and 0% amplitude reduction(Fig. 54B).During the wear and pitting process,

two types of stiffness changes are examined, i.e., the phase changes, shown in Figure .54A, and

the amplitude changes, shown in Figure 54B. Figures 55 and 56 show the time, frequency, and

joint time-frequency analysis(WVD) of the pinion gear vibration signals with the approximated

changes in gear mesh stiffness.

Figure 55 shows the effects of mesh stiffness phase changes in the WVD representation

of the predicted vibration signal. As seen in Figure 55, a phase change in the mesh stiffness at

the 6th tooth of the 12-teeth p_on resulted in a temporary increase of amplitude and phase of

the pinion vibration time signal during the 6th tooth pass location. As the phase shit_ in the mesh

s_s increases, from 1.5 degrees to 4.5 degrees, the changes in amplitude and phase in the

vibration signal become more pronounced. In the frequency spectra, this change in mesh stiffness
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will result in the increase of the amplitude in the sideband frequencies. However, as discussed

earlier, although the frequency spectrum provides good indications of the existence of

non-synchronous components, it can not distinguish the time locations of their occurrences. The

joint _-frequency analysis using WVD, as indicated by the scale of shades given in Figure 55,

shows the existence of various frequency components as the pinion rotates through a complete

revolution of 360 degrees. Note that, in this case, the WVD shows a continuous excitation of the

mesh frequency (12 x rotational speed) throughout tim complete 360-<legrce revolution while

subsynchronouscomponentsof8 times,4 times,and I timesrotationalspeedareoccurringatthe

6th and 7th tooth pass locations,

Figure 56 shows the effects of reduction in mesh stiffness at the 6th gear location. With

thereductionofmesh stiffness,a substantialchangeinthevibrationatthe6thtoothpasslocation

(150-180 degrees)isobserved.Note thatinthecaseof50% stiffnessreduction,thetime

vibrationamplitudeatthe6thtoothpasslocation(atapproximatelythe180 degreelocationforthe

12 teeth pinion) almost vanishes and a much larger amplitude at the 7th tooth pass location is

generated. In addition, the vibration amplitudes of the 8th and 9th tooth pass locations are

reduced. These reductions in vibration amplitudes at mesh frequency resulted in a much higher

sub-synchronouscomponentsinthefrequencyspectrumas shown inFigure56C, The WVD

shows a distincttypeofcrosspatternattheintersectionofthemesh frequencyand the6thtooth

passlocationwitha continuousmesh frequencycomponentthroughoutthecompletepinion

revolution.

FigureS7 shows thepiniongearvibrationsignatureanalysisoftheexperimentaltime

signalacquiredatA) 12 hourswhen one toothisseverelypitted(Figure53B),and B) 17.8
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hours,when threeconsecutiveteetharcpitt_and one hasa toothfracture(Figure53C). To

numerically simulate these phenomena, two gear mesh stiffness models, as shown in Figure 58A

and 58B, which includea combinationofphaseshiRand amplitudechange,areinmxluced.

Figure58A representsthegearmesh stiff-nessfora heavilypittedtoothduringa singletooth

pass.The mesh stiffnessissimulatedby a 50% lossinstiffnessatapproximatelyfirst20% of

contactingperiod.Figure58B representthemesh stiffness,forthreetoothpassperiod,consisting

ofone brokentoothwithtwo heavilypittedt_th attheadjacentsides.Nora thatthestiffnessof

themiddle(broken)toothissimulatedby a 50% lossofstiffnessatthefirst40% ofitscontacting

periodwhiletheotheradjacent(pitted)teetharesimulatedby thestiffnessreductionsimilarto

thatofthesingletoothcaseasshown inFig.58A. Additionalfrictionaleffectsarealsoadded

intothemodel tosimularatheroughnessofthetoothsurfacedue topitting.The simulated

vibrationsignatureof thepiniongearisgiveninFigure59.Comparing Figures59A and 57a,for

thesingletoothdamage caseat12 hours,one may noticethesimilaritiesbetweenboththe

frequencyspectraand theWVD display.Some oftheunevennessintheexperimentaltimesignal

ismainlydue tothemodulationoffrequenciesdue tootherexcitationsinthetestrigwhich arc

notnumcricaUymodeled.For thetoothbreak-offcaseat17.8hours,Figures57B and 59B, both

thenumericaland theexperimentalWVD displaya largecrosspatternatthe6thtoothpass

locationdue totoothbreak-off.However, some discrepancieshave been detectedhetwcenthe

experimentaland thenumericaltimesignalatthe4thand 5thtoothpasslocations.The

experimentaltimesignalconsistsof some higherfrequency,smalleramplitudevibration

modulation, which are not being numerically simulated. This additional modulated signal

resulted in the excitation of the 14 times rotational speed component, as shown in the frequency
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spectrum in Figure 57B, and, also, in turn, is responsible for the small differences created in the

WVD.

5.6.Summary and Conclusions

A nurncricalprocedurehasbeen developedtosimulatethedynamicsofgeartransmission

systemswiththeeffectsofgeartoothdamage due towear andpitting.The work presentedinthis

papercan be summarized as follows:

I)A modal synthesismethodologyhasbeendevelopedtosimulatethedynamicsofgear

transmissionsystems.While thecomputationaleffortshasbeengreatlyreducedby modal

transformation,thenumericalresultsgeneratedmaintainsgood accuracy.

2)Gear toothdamage due towear and pittingcan be simulatedby amplitudeand phasechanges

inthegearmesh stiffnessmodel.The gearmesh model developedcaneasilybe incorporatedinto

theglobaltransmissionsystemfordynamic predictions.

3)Using thetimeavenging technique,frequencyspectrumanalysis,and theWigner-ViUe

distribution,a signatureanalysisscheme canbe developedtoexamineand characterizethe

vibrationsignalofthegearsystem.

4)A parametricstudyof theeffectson thevibrationsignaldue tovariouschangesinthegear

mesh stiffness model, simulating various degrees of pitting and wear damage, could provide a

comprehensive database for gear fault detection and damage estimation research.
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CHAPTER 6

QUANTIFICATION OF GEAR TOOTH DAMAGE

BY OPTIMAL TRACKING OF VIBRATION SIGNATURE
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6.1. Objective

In the last two decades, with demands for higher operating speeds and greater load

capacity, premature failures in high-performance turbomachinery have otten resulted in

enormous fmancial losses and, at times, catastrophic consequences. In aeronautical applications,

where both weight and efficiency are pushed to their design limits, the prevention and

management of premature equipment failures is a vital part of the maintenance program. Current

onboard condition-monitoring systems for gas turbine engines often fail to provide sufficient

time between warning and failure for safety procedures to be implemented. On the other hand,

inaccurate interpretation of operating conditions may result in false alarms and unnecessary

repairs and downtime. The early detection of incipient failure in a mechanical system is of great

practical importance as it permits scheduled inspections without costly shutdowns and indicates

the urgency and locations for repair before a system incurs catastrophic failure.

Some success has been achieved in identifying damage in a gear transmission system by

using the Wigner-Ville distribution (WVD) technique as described in the previous chapters

[4,7,9,15]. The approach is to use statistical pattern recognition to match the WVD signature

pattems of damaged gears with standard patterns stored in a data base. Although the WVD

technique is useful for determining the type and location of the damage, it is not much help in

quantifying the level of damage. Damage quantification would logically be the next step in

!
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failure prediction; however, no explicit attempts at damage quantification have previously

appeared in the literature.

This chapter presents a new technique for processing vibration data to quantify the level

of damage in a gear transmission system. The technique consists of a nonlinear numerical

optimization in the form of an "optimal tracking" problem [56,57]. The optimization uses a

dynamic model of the gear mesh and forms an estimate of the time-varying mesh stiffness that

best corresponds to the given set of vibration data. The utility of the technique relies on the

relationship between the wear or damage of a gear tooth and the change in stiffness of the mesh

during a given tooth pass cycle. An analysis of this relationship demonstrates that the

perturbation of the stiffness function from the nominal profile can be used to quantify the level of

damage.

The optimal tracking technique for estimating the perturbation of the mesh stiffness was

tested in two settings. First, it was tested on a set of fictitious data generated by computer

simulation of a one-degree-of-freedom mechanical system with time-varying stiffness. The

solution of the optimal tracking problem matched very closely the actual stiffness profile used in

the model generating the data. Then, the technique was tested on a set of experimental data from

a gear test rig, but still assuming the one-degree-of-freedom model. Despite the simplicity of the

model the stiffness profile obtained was shown to be useful in correlating to the level of damage

of the gear transmission system.

This chapter is organized as follows: Section 2 presents the system model and formulates

the optimal tracking problem. Section 3 outlines the numerical solution procedure for the
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nonlinear optimization. Section 4 presents and interprets the results of the optimization and

discusses the next steps to be taken in developing a comprehensive failure-prediction procedure.

6.2. OPTIMAL TRACKING PROBLEM

w

_J

m

N

6.2,1 System Model

The system considered in this study consisted of a small pinion in mesh with a larger

gear. A simple model of this system has the two gear masses connected by a spring and a

damper. The larger gear is much heavier than the pinion; hence, it is assumed to be rigid, so that

all relative motion between the two is attributed to the motion of the pinion. Then, the equation

of motion of the pinion takes the form

m_ + c_c + k(t)x = 0 (6.1)

where m is the mass of the pinion and k(t) and c are the stiffness and damping of the mesh. The

mesh stiffness is not constant but is nominally a periodic function of the gear angle, with each

period corresponding to one tooth pass. The high points on the periodic stiffness function

correspond to gear angles where two pairs of gear teeth are in contact, and the low points

correspond to angles where only one pair is in contact.

It has been found in experiments on gearbox vibrations[7-9] that the gear mesh stiffness

changes with the wear, pitting, or fracture of the gear teeth. Such changes in the gear mesh

stiffness inevitably lead to changes in the vibration signatures of the mechanical system. The

objective of the optimal tracking procedure developed in this study is to reconstruct the true

stiffness profile for a damaged gear tooth from the measured vibration. That is, the objective is to
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determine the function k(t) that would result in the measured vibration according to the system

model (6.1).

The true stiffness profile can be expressed as the sum of a constant (time averaged)

component, a nominal periodic component, and a perturbation resulting from gear wear or

damage. Accordingly, the system model (6.1) is written as

nff + c2 + [ k_,,- k_,_o,nc - kp,_,(t) ]x = 0 , (6.2)

or

c

£ + --2 + _2x=u(t)x, (6.3)
m

where .O2 = kave/m and u(t) represents the total time-varying component of the stiffness divided

by the pinion mass. By defining the variables

x I = x, x 2 = x, (6.4)

the system model can be written in the state-variable form

21 = -Cx I -f2_x_ + u(t)x 2
m (6.5)

2 5 = X I

with the given initial conditions

xl(to) = 20, x2(to)= ×o. (6.6)

6.2.2 Optimization Problem

Suppose that a data set corresponding to the vibration of the pinion is collected over the

interval [to,tf]. Let the function describing the data set be denoted asi2(t), since it corresponds to
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the modeled variable x2 (t). The objective is to determine a reasonable time-varying stiffness

component u(t) for which the model output x2 (t) approximates the measured data _2 (t).

A diagram depicting the functional objective is shown in Fig. 60. In the figure u(t) is

depicted as an input to be chosen so that the error e(t) will be small for all time. Note that this

problem has the form of a tracking problem, where the control input of a system is designed so

that the system output follows a prescribed reference function. Such a problem may be

approached by using the standard techniques of optimal control theory[56,57]. In particular, the

"design" of a suitable function u(t) may be achieved by minimizing the quadratic cost functional

t/

to

where ill, ,82, and ,/_ are cost-function weighting coefficients. This form of the cost functional

penalizes the energy in the error between the modeled output and the measured data. It also

penalizes the use of too large a stiffiaess perturbation function in order to avoid singularity in the

solution.

In the optimal tracking problem the system dynamic equations (6.5) are treated as equality

constraints imposed in the optimization of the cost (6.7). As such, they are appended to the cost

function by using time-varying Lagrange multipliers 2l(t) and 22(0. These Lagrange multipliers

are themselves governed by differential equations called the costate equations. The costate

equations together with the state equations of the system model form a two-point boundary value

problem (TPBVP)[56,57]. The TPBVP equations are

c
:q = ---x_ - f22x_ + u(t)x2

(State equations) m

X2 = Xl

(6.8)
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(Costate equations)

(Stationarity condition)

(Eadlmint conditions)

= _e,z2, -;t: +
m (6.9)

"_2= f_221 - u(t)2, - fit(x2(t) - x2(t) )

0 = 2,x 2 +.82u(t) (6.10)

xt(t o) = _co , x2(to)= xo (6.11)

2,(t,)= O, _,2(tf)= il](x2(t:) - _2(tf) )" (6,12)

The TPBVP (6.8-6.12) represents a set of necessary conditions for u(t) to be the solution of the

optimal tracking problem. The TPBVP consists of a set of four coupled differential equations

(6.8-6.9), together with an algebraic relation (6.10), and some endpoint conditions (6.11-6.12) at

both to and t:. Notice that the TPBVP is nonlinear: the unknown function u(t) multiplies other

independent variables in the differential equations.

w

6.3, NUMERICAL SOLUTION PROCEDURE

The nonlinear TPBVP (6.8--6.12) is solved by an iterative procedure. A complete and

general derivation of the procedure is given in Sage[57] and Dyer and McReynolds [55]. Some of

the salient points are outlined below for convenience.

W

w

6.3,1 Successive Sweep Method

Solving the nonlinear TPBV'P requires an iterative method. Although several approaches

are possible, a common and useful one is to begin with an initial guess u°(t) and use it to

integrate the nonlinear state equations (6.8) forward in time starting from the initial conditions

(6.11) to determine the nominal state functions x°(t) and x°(t). Then, starting from the final

conditions (6.12), integrate the nonlinear costate equations backward in time to determine the



F--

L_4

I00

nominal costate functions 2°(t) and 20(0. The nominal functions u°(t), x°(t), x°(t), 20(0, and

,t°(t) then satisfy all the TPBVP equations except the stationarity condition (6.10).

The nominal state, costate, and input functions must be iteratively updated, so that they

will eventually satisfy all the nonlinear TPBVP equations, including the stationarity condition.

Each update is accomplished by solving a linearized version of the TPBVP. A standard method

for doing this is known as the sweep method, whereby a linear relationship between the state and

costate functions is assumed. Then, the linear TPBVP degenerates into a set of ordinary

differential equations with endpoint conditions at the final time only. These are solved by a

straightforward numerical integration. In the case of the optimal tracker these ordinary

differential equations take the form of the coupled Riccati equations

Pll 2 (C= Pll -Pl2 ) + P_I x---L
m f12

2

c 1 x_ (6.13)
P12 =--Pt2 - P22 - PI,(m - f22 + u(t) --fi221x_ ) + P, lP12 -fi-_

p_ =-gp,_ ( _n _+_(t)-_,_,x_ ) + p_l_x_ _(p, +2, )P_ P_

with endpoint conditions

p,,(t:) = pn(t/) = O, p_(t:) = fl: (6.14)

together with the auxiliary linear equations

2
C X 2 X 2

fT_=h, (--+p,, ) -h2-p,,6 (2,x 2 +fl2u(t))m
(6.15)

f_ =-h, ( -n2 + u(t)--_2 2,x2 -pn-_ ) - _-(2,x_ + fl2u(t))(p,_x_ + 2,)
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hl(tf) = h2(tf) = O. (6.16)

7 "

E

z
L

Note that the x and 2 variables in the differential equations (6.13) and (6.15) represent the given

nominal functions. (The zero superscripts have been omitted for convenience.) They are simply

treated as time-varying coefficients in the numerical integration of the differential equations. The

solutions of equations (6.13) and (6.15) are then used to compute the corrections to the nominal

state, costate, and input functions. This computation requires yet another numerical integration,

this time of the linearized state equations

2 2

c x 2 _ _2 _22 x2Aic, = -Ax, ( --+m p'' _ ) + Ax2( + u(t)- 2,x_ - P,2 _ ) -

- h_ x2--_-_+ x2
#_ ep-7(,Z,x2 + #2u(t))

l_f, 2 = t_ I

with the zero initial conditions

(6.17)

Ax,(t o) = Ax2(to) = O. (6.18)

Finally, the update of the nominal control is computed as

au = e--C(,t,x_#_+ P,u(t)) - -_(2,ax2 + x_(p,,ax, + p,_ax_+ _ )),

where 6 is the step size, and the new nominal control is given by

(6.19)

u ;*l (t) = u' (t) + Ad (t). (6.20)
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(The superscripts i and i+1 denoting the iteration number have been reinserted in equation

(6.20).) The procedure is repeated until the nominal functions converge to a solution.

The real scalar c _ [0,1] in equations (6.15), (6.17), and (6.19) is used as a "step size"

parameter. Using a smaller value of 6 tends to decrease the magnitudes of the corrections, thereby

improving the stability of the iterative procedure but slowing the convergence to the solution.

Using a larger value of 6 has the opposite effects.

w

_4_I

L_

6.3.2 Numerical Details

The choices of the cost-function weighting coefficients ill, ,/?2, and flf are important for

effective numerical optimization. The parameter fll defines the penalty on the difference between

the calculated and reference vibration signals. Since the goal is to minimize the difference

between the calculated and tracked vibration signals, a large weighting coefficient fll should be

chosen. The parameter f12 defines the penalty on the function u(t). Generically speaking,/?2

should impose a lighter penalty on u(t) than fll imposes on the tracking error. Note also that the

choice of units has an effect on the appropriate relative sizes of fll and ,/?2. In the examples

studied the numerical values of u(t) are considerably larger in magnitude than those of a

reasonable vibration-signal error; therefore, even if equal weighting between error and control

were desired, f12 should be chosen to be considerably smaller than ill. An inappropriately large

choice of the parameter flz would make the cost function almost unchanged from one iteration to

the next. Thus, a small constant value was chosen for the parameter f12. The parameter flfdefines
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Ifflfis too small, a large vibration error at the final

optimization algorithm

The equations were

time will result.

By following these general guidelines the

previous section was realized in a computer program.

seventh-order Runge-Kutta-Fehlberg method.

below"

described in the

integrated with a

A summary of the programming steps is given

w

. ,

_J

0. Set i = 0 and take the initial guess uO(t) for the function u(t) to be zero.

1. Using the function ui(t) from the previous step, integrate the state equations (6.8) forward in

time. Calculate the resulting cost function 3 / .

2. Integrate the costate equations (6.9) backward in time.

3. Use the computed state and costate variables as time-varying coefficients in the integration of

the Riccati equations (6.13) along with the auxiliary equations (6.15) backward in time.

4. Integrate the linearized state equations (6.17) forward in time. Using the linearized

stationarity condition (6.19), calculate the correction Aui(t) to the nominal function ui(t) and

hence the updated function ui+l(t). Also, calculate the new cost function 3/+1.

5. Make decisions about the continuation of the optimization procedure and the choice of the

parameters:

a. If the difference between the calculated and tracked vibration signals is small, the

optimization procedure is f'mished.

b. If the difference 3/+1 _3/< 0 is large enough, repeat from step 1.

c. If the difference 3/+1 _ j/< 0 is too small, increase the weighting fll and repeat from step

1.
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d. IfJ i+l > J/, repeat from step 1 using a smaller value of the step size 6. If this is not

successful, increase the error weighting fll and repeat from step 1.
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Some comments should be made on step 5 of the numerical procedure. It was observed

that for given values of weighting coefficients and the step-size parameter the optimization

procedure converges to some value of the cost function. In this case the difference between the

values of the cost functions j/+l _ ji becomes negligible after some iterations. This means that

the cost associated with the control u(t) is becoming dominant. Therefore, it makes sense to start

a new iteration with an increased weight fll (i.e., imposing a higher penalty on the vibration

error).

6.4. DISCUSSION OF RESULTS

To demonstrate the optimal tracking procedure described above, two numerical cases

were used in this study. The first case was a numerical experiment in which the tracker was

applied to a set of vibration signals generated numerically, assuming a given gear mesh stiffness

profile. The mesh stiffness profile evaluated by the optimal tracker was compared with the

original stiffness used in generating the vibration signal. Figure 61(a) shows the comparison

between the vibration signal generated by a sinusoidal stiffiaess and that simulated by the optimal

tracker. As shown in the figure the two vibration signals were very similar; the small difference

between the two signals is given in Fig. 61(b). Figure 62(a) depicts the original gear mesh

stiffiaess used and the stiffness evaluated by using the optimal tracker; the difference between the

two stiffnesses is given in Fig. 62(b). The excellent agreement between the two stiffnesses in this
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numerical experiment has confirmed the applicability of the optimal tracking procedure in

evaluating system stiffness changes from system vibration signals. However, this close

resemblance between the generated and simulated signals was partly due to the original time

signals being smooth, continuous, and harmonic without any substantial change in magnitude

and phase over the gear revolution. To demonstrate the generality and limitation of the developed

procedure, a set of experimental data taken from a test rig was used in the next case.

The second case was based on the experimental data obtained from the spiral bevel gear

test rig shown in Fig. 63. The primary purpose of this rig is to study the effects of gear tooth

design, gear materials, and lubrication types on the fatigue strength of aircraft-quality gears [45].

Because spiral bevel gears are used extensively in helicopter transmissions to transfer power

between nonparallel intersecting shafts, using this fatigue rig for diagnostic studies is extremely

practical. Vibration data from an accelerometer mounted on the pinion shaft beating housing

were captured by using a personal computer with an analog-to-digital conversion board and an

anti-aliasing filter. The 12-tooth test pinion and the 36-tooth gear have the following

characteristics: 0.5141 in pitch, 35 ° spiral angle, 1-in. face width, 90 ° shaft angle, and 22.5 °

pressure angle. The pinion transmits 720 hp at a nominal speed of 14 400 rpm. The test rig was

started and stopped several times for gear damage inspection. The test was ended at 17.72

operational hours when a broken portion of a tooth was found visually during one of the

shutdowns.

Figure 64(a) depicts the gear tooth after 6.5 hr of operation. Note that there is heavy

surface pitting on one gear tooth with minor pitting on the next tooth. Figure 64(b) shows the

time domain averaging, the frequency spectrum, and the joint time-frequency analysis using the
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Wigner-Ville distribution (WVD) [4,7-9,15] of the accelerometer signal at 6.5 hr[9]. Note that in

Fig. 64(b) the time signal indicates a large vibratory signal during the engagement of the sixth

and seventh teeth (damaged teeth), but the frequency spectrum, because of its averaging

characteristics, shows very little change from the original signal [9]. The WVD begins to show a

pattern of shifting of the major frequency component (at a mesh frequency of 2880 I-Iz) around

the meshing of the sixth and seventh teeth. The WVD pattern in this case is very similar to those

resulting from a short-term amplitude and phase change of a vibration signal. Although it has

been established by the authors in some previous publications [7-9] that such damage in the gear

can be identified by the WVD pattern recognition process, the level of the damage has not been

addressed. A recent study by the authors has shown that wear and surface pitting of the gear tooth

usually will result in a phase shift in the stiffness profile, without any significant change in the

stiffness magnitude. Figure 65 shows the stiffness change in a gear mesh evaluated [10] from

gear tooth surface profile variations. Note in Fig. 65(b) that increasing surface profile variation

increases the phase shift of the gear stiffness without changing the magnitude of the stiffness.

Incorporating this constant gear mesh stiffness as an additional constraint, the optimal

tracking procedure was applied to the experimental vibration signal (obtained from the bevel gear

test rig at 6.5 hr as shown in Fig. 64) to evaluate the corresponding gear mesh stiffness. To better

evaluate the gear mesh stiffiaess, the time signal was filtered at a mesh frequency of 2880 Hz.

Figure 66(a) shows the comparison between the unfiltered experimental signal and the optimal

tracker simulation, and Fig. 66(b) shows the comparison between the filtered experimental signal

and the tracker-simulated signal. Note that because of the substantial change of magnitude and

phase of the time signal during the data acquisition period (one revolution of the gear), the
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accuracy in the simulated vibration is not as good as that in the numerical experiment (Fig.

61(a)). Figure 67 depicts the gear mesh stiffness evaluated by using the optimal tracker. Note

that in the evaluated stiffness considerable phase shifts at several gear teeth resulted in the large

variation in magnitude and phase of the vibration signal. At the location where pitting occurred

(teeth 6 and 7) the phase shift of the stiffness was more pronounced. By using the results from

the evaluated mesh stiffness and the correlation of stiffness change with gear wear shown in Fig.

65(b), the gear damage can be estimated.

6.5. CONCLUSIONS

This chapter presents a unified approach to identifying and quantifying damage in a gear

transmission system. The conclusions from this study are as follows:

w

L

w

m

w

1. The application of the joint time-frequency technique called the Wigner-Ville distribution

provides the ability to identify the types and locations of the gear damage.

2. The optimal tracker developed in this chapter provides a very reasonable estimate of the

stiffness change due to damage, which can be related to the level of gear damage.

3. For vibratory signals with large changes in magnitude and phase angle the accuracy of the

simulated signal from the optimal tracker may decrease.

4. For a more accurate evaluation of system mesh stiffness an optimal tracker for the complete

dynamic model of the system is needed.

w
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GENERAL CONCLUSIONS

During this study, a numerical procedure has been developed to simulate the dynamics of

gear transmission systems with the effectsof gear tooth damage due to wear and pitting. The

numerical procedure developed consists of (a) a numerical model to simulate the gear mesh

stiffness change resulting from gear tooth damage due to surface pitting and wear, Co) a modal

synthesis methodology to simulate the dynamics of gear transmission systems, (c) a joint time-

frvquency analysis using the Wigner-Villle distribution (WVD) method to provide a

comprehensive representation of the vibration signature for fault detection, and (d) the use of an

optimal tracker to quantify the damage in the gear tooth. The developed numerical procedure was

verified by comparison with vibration data from a damaged gear obtained at the NASA Lewis

gesear_h Center. The specific accomplishements in this project can be summarized as follows:

1. A method has been developed to simulate the effects of tooth surface wear in a gear

transmission system. The tooth surface wear level can be controlled by adjustment of both

amplitude and length in the tooth profile modification.

2. Using the developed gear tooth damage model, tooth damage due to wear and pitting can be

simulated by amplitude and phase changes in the gear mesh stiffness model. The gear mesh

model developed can easily be incorporated into the global transmission system for dynamic

predictions.

3, A numerical procedure has been developed to simulate the vibration in a gear transmission

system with effects of gear tooth damage due to wear and pitting. The modal synthesis

methodology was used for simulating thedynamicsof gear transmission systems. The gear
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mesh model developed to simulate the gear tooth damage due to wear and pitting are

incorporated numerically into the global system for dynamics predictions,

4. The Wigner-Villle distribution (WVD) method used for the joint time-frequency analysis

provides a comprehensive representation of the vibration signal. It was successfully used to

verify the numerical model developed.

5. Based on the results of the application of the various time and fiequency analysis techniques, it

can be concluded that the WVD provides vital information concerning both the severity and the

location of the pitting process in the gear system. The fracture of the gear tooth and its exact

location can be pinpointed using the WVD technique. However a machine vibration signature

database is required to interpret the resulting WVD.

6. A parametric study of the effects on the vibration signal due to various degrees of pitting and

wear damage, has provided a comprehensive database for gear fault detection and damage

estimation research.

7. A parametric study of the effects on the vibration signal due to various changes in the gear

mesh stiffness model, simulating various degrees of pitting and wear damage, could provide

a comprehensive database for gear fault detection and damage estimation research.

8. The optimal tracker developed in this chapter provides a very reasonable estimate of the

stiffness change due to damage, which can be related to the level of gear damage. For

vibratory signals with largo changes in magnitude and phase angle the accuracy of the

simulated signal from the optimal tracker may decrease. For a more accurate evaluation of

system mesh stiffness an optimal tracker for the complete dynamic model of the system is

needed.
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APPENDIX

LISTING OF COMPUTER PROGRAM
FOR

DYNAMIC SIMULATION



CHARACTER*30 DATA FILE(N50),

CHARACTER*30 FILE_OUT(N50)
_ CHARACTER*30 NAME

CHARACTER*I A,B

FSTAT (N50)

" ' INTEGER NROT, NGEARS, "NOBOX, NOMODE, ICOUNT

INTEGER NMODE (N50)

-- INTEGER NUNIT(N50) ,NSTAT(N50)

INTEGER NBEAR(NI0), LBEAR(NI0,NI0)

INTEGER NCON_BEAR (NIO, NI0, NI0, NI0)
INTEGER LONG

INTEGER NUM, NSWITCH(NIO)

._ REAL STIF2(NI0,NI0,6,6),STIFA(NI0,NI0,6,6)
_L_ REAL DAMP2(NI0,NI0,6,6)

REAL SHAPE (N50, N50, N50,4)
REAL FREQ (NI0, NI0,NI0)

-***********************************************************************

OPEN (9,FILE='menu.dat' ,STATUS='OLD')

-- DO I00 I=I,NI0

i00 NSWITCH(I)= 0

._ DO I0 I=I,N50

NUNIT(I)=9 + I
i0 CONTINUE

= ICOUNT= 0

-_ READ (9, *)
READ (9,*) NROT

READ (9,*)

READ (9,*) NGEARS

__ READ (9,*)

C* ENTER FILE WITH SHAFT DATA *C

READ (9,15) DATA FILE (ICOUNT+I)
FSTAT (ICOUNT+ 1 )=TOLD '

READ (9, *)

C* ENTER FILE WITH GEAR DATA *C

READ (9,15) DATA FILE(ICOUNT+2)
FSTAT (ICOUNT+ 2 ) =TOLD '

_* ENTER FILE WITH BOX DATA *C

READ (9,*)

READ (9,*) NOBOX

IF ( NOBOX .EQ. 1 ) THEN

READ (9,*)

READ (9, *)
ICOUNT= ICOUNT - 1



ELSE
READ
READ
FSTAT
ENDIF
READ
READ
READ
READ
READ
READ

(9,*)
(9,15) DATA FILE(ICOUNT+3)
( ICOUNT+3 ) =TOLD '

(9,*)

(9 ,*) NOMODE

(9,*)

(9,15) DATA_FILE (ICOUNT+4)
(9,*)
(9,15) DATA_FILE (ICOUNT+5)

IF ( NOMODE .EQ. 1 ) THEN

FSTAT(ICOUNT+4)='NEW'

FSTAT(ICOUNT+5)='NEW'
ELSE

_ FSTAT(ICOUNT+4)='OLD'
_ FSTAT(ICOUNT+5)='OLD'

ENDIF

DATA_FILE(ICOUNT+6)='input.out'
FSTAT(ICOUNT+6)= 'NEW'

NCOUNT=ICOUNT+6

DO 30 I=I,NCOUNT

OPEN(NUNIT(I) ,FILE= DATA_FILE(1) ,STATUS= FSTAT(I) )
30 CONTINUE

_ READ (9, *)

,_ READ (9,15) FILE_OUT(l)

READ (9, *)
_ ,) MUM_ READ (9,
_-_ READ (9,*) ( NSWITCH(i),I= I,NUM )

WRITE(NUNIT(NCOUNT),*) ( NSWITCH(I),I= I,NUM )

**********************************************************

_C******* END OF MENU INPUT *****************************

*********************************************************

DO 32 I=2,LEN(FILE_OUT(1))
IF( FILE OUT(1) (I-l:I) .EQ. ' ' ) THEN
LONG= I-2

GOTO 33
_ ENDIF

32 CONTINUE

33 CONTINUE

w

r_

__35

DO 35 I=I,NGEARS

IF( I .LT. i0 ) THEN

A= CHAR (48+I) i
NAME= FILE__OUT(l)

OPEN (NUNIT(NCOUNT+I) ,FILE= NAME (:LONG)//'. '//A,

& _ STATUS= 'NEW ' )
ELSE

K= INT(I/10)

J= MOD(I, I0)

A= CHAR (48+K)

B= CHAR (48+J)

NAME= F I LE_OUT (1 )

OPEN (NUNIT (NCOUNT+I), FILE=
&

ENDIF

CONTINUE

NAME ( :LONG)//". '//A//B,

STATUS= 'NEW ' )

FORMAT(IX, 25A )_15



***********************************************************************

CALL LAT(NUNIT,NCOUNT,NROT,NSTAT,NBEAR, LBEAR,STIF2,

" & DAMP2,STIFA,FREQ,SHAPE,NMODE,NCON__BEAR, NSWITCH)
***********************************************************************

IF(NSWITCH(2) .EQ. 1 ) STOP

CALL MOTION(NUNIT,NCOUNT,NROT,NSTAT,NBEAR,LBEAR,STIF2,
-- & DAMP2,STIFA, FREQ,SHAPE,NMODE,NCON BEAR, NSWITCH)
***********************************************************************

END

***********************************************************************

-- SUBROUTINE MOTION(NUNIT,NCOUNT,NROT,NSTAT,NBEAR,LBEAR,STIF2,
& DAMP2,STIFA,FREQ,SHAPE,NMODE,NCON_BEAR, NSWITCH)

= ,

_ PARAMETER NONE= 1
PARAMETER UNBAL= 2

PARAMETER BEAR= 3

• _ PARAMETER GEAR= 4

PARAMETER EXTERN= 5

_ PARAMETER ROTOR= 1
PARAMETER CASING= 2

PARAMETER GROUND= 3

" PARAMETER N50=50

PARAMETER NROT SIZE=I0

PARAMETER El0=10

PARAMETER N20=20
PARAMETER N30=30

PARAMETER N120=120

PARAMETER N500=500

PARAMETER N5=5

.... PARAMETER N140=140
L

PARAMETER PI= 3.14

_:* OLD VARIABLES *C
INTEGER NROT

REAL SHAPE(N50,N50,N50,4)

REAL FREQ(NI0,NI0,NI0)

REAL FTEMP (El0, El0, El0)

INTEGER NMODE (N50)

INTEGER NUNIT(N50), NSTAT(N50)
_ INTEGER NCOUNT

INTEGER
_- INTEGER

INTEGER

INTEGER

NBEAR(NI0), LBEAR(NI0,NI0)

NGEAR(NI0), LGEAR(NI0,NI0)

NCON_BEAR(NI0,NIO,NI0,NI0)

NCON_GEAR(NI0,NI0,NI0,NI0)

INTEGER NSWITCH(NI0)

REAL STIF2(NI0,NI0,6,6),

REAL DAMP2(NI0,NI0,6,6)

STIFA(NI0,NI0,6,6)

INTEGER

INTEGER

INTEGER

NFACT, NPOINTS, NCALC, NCYCLE, NCYCLE_TRAN

NUNBAL (N20), ISTAT_UN (N20, N20)

NUN IT_OUT (N20, N20 )

REAL FSAMPLE, TCYCLE (N20)

REAL UNBX(N20,N20), UNBY(N20,N20),

_* NEW VARIABLES *C
C* GLOBAL VARIABLES *C

INTEGER NODE TABLE(N20,5,N50)

INTEGER CLASS_TABLE(N20,N20)

PHIADD (N20, N20)



INTEGER

INTEGER

INTEGER
INTEGER

NODE CON (N50, NS0)
CLASS NODE (N50)

CLASS--NAME (N50)

NODE_LOC (N50)

REAL

REAL

REAL

REAL

REAL

REAL

REAL
REAL

REAL

SHAPE NODE(N50,N20,6)

STIF_BEAR(N20,6,6), DAMP_BEAR(N20,6,6)

STIF AV(N20,6,6)

XN(N_0,N20,6), VN(N20,N20,6), AN(N20,N20,6)
XNP(N20,N20,6), VNP(N20,N20,6), ANP(N20,N20,6)

FBEAR(N20,N20,6) .

FGEAR(N20,N20,6)
FUNB(N20,N20,6) .

TORQUE(N20), FEXT(N20,N20,6)

REAL AMPL PHASE(N50,3)

REAL ANGULA(N20,2)

REAL TIME, DELTAT

INTEGER YES_NO, NL

INTEGER ITYPE, NTYPE, NTYPE_GLOBAL,
INTEGER NPOINT(N20)

INTEGER ITYPE_DAM(N50,N50)

= REAL AGEAR(N20,N20,NIO),
REAL STIF GEAR(N20,NI20)

"_ REAL TMR(N20,3,3)

REAL ACUR (N20)
--_ REAL GEAR STIF

C AMPL= AMPL PHASE(INODE,I)

" PHASE= AMPL PHASE (INODE, 2)

_ PHIADD = AMPL PHASE (INODE, 3)

NTYPE STIF

AGSTIF(N20,NI20)

C******** INITIALIZATION NCON GEAR TABLE

DO 5 IROT=I,NROT

_ DO 5 IGEAR=I,NGEAR(IROT)

DO 5 JROT=I,NROT

DO 5 JGEAR=I,NGEAR(JROT)

******************************

?/s
NCON GEAR(IROT,IGEAR,JROT,JGEAR)=0
CONTINUE

INODE= 1

_ JCHECK=0

=-_ READ (NUNIT(2) ,*)
_" READ (NUNIT (2) ,*)

READ (NUNIT(2),*) NCYCLE, NCYCLE__TRAN, NPOINTS, NFACT

_ READ (NUNIT(2),*)

_-_ READ (NUNIT(2),*) NROT

I0 READ (NUNIT (2) ,*)
READ (NUNIT(2),*) IROT

READ (NUNIT (2) ,*) "

-_.5 READ (N-UNIT (2 ), * ) ANGULA (IROT, i), ANGULA (IROT, 2 )

READ (NUNIT(2),*)

E_

r •

5_

READ (NUNIT(2),*) NUNBAL(IROT)

DO 500 I=I,NUNBAL(IROT)

READ (NUNIT(2),*) ISTAT UN(IROT,I),

& UNBX(IROT,I), UNBY_IROT,I), PHIADD(IROT,I)

WRITE (NUNIT(NCOUNT) ,*) 'IROT ',IROT,' NUNBAL ',NUNBAL(IROT),
& ' UNBX ',' UNBY'

WRITE (NUNIT(NCOUNT) ,*) UNBX(IROT, I), UNBY(IROT, I)



-- 500 CONTINUE

READ (NUNIT(2),*)

READ (NUNIT(2),*) NODE LOC(INODE), TORQUE(IROT)
CLASS TABLE(IROT,EXTE_)= 1

NODE_TABLE (IROT, EXTERN, i) = INODE

CLASS_NODE (INODE) = IROT
INODE= INODE + 1

: 5O5

=

.....515

_520

READ (NUNIT(2) *)
READ (NUNIT(2) _*) cLASS TABLE(IROT,NONE)

DO 505 INONE= i, CLASS_TABLE(IROT,NONE)
READ (NUNIT(2) ,*) ILOC

NODE LOC(INODE)= ILOC

NODE TABLE (IROT, NONE, INONE) = INODE

CLASS NODE (INODE) =IROT
INODE= INODE + 1
CONTINUE

JCHECK=JCHECK+I

IF ( JCHECK .LT. NROT ) GOTO i0

READ (NUNIT (2 ), * ) :

READ (NUNIT(2),*) YES NO

IF( YES_NO .EQ. 0 ) GOTO 510

WRITE (NUNIT(NCOUNT) ,*)
WRITE (NUNIT(NCOUNT),*) ' GEAR DATA INPUT '

WRITE (NUNIT(NCOUNT) ,*)

JCHECK=0

READ (NUNIT(2) ,*)
READ (NUNIT(2),*) IROT

READ (NUNIT(2) ,*)

READ (NUNIT(2) ,*) NGEAR(IROT)

DO 520 IGEAR= I,NGEAR(IROT)
READ (NUNIT (2), *) LGEAR (IROT, IGEAR)

WRITE (NUNIT(NCOUNT) , *) LGEAR(IROT, IGEAR)

READ (NUNIT(2),*) (AGEAR(IROT,IGEAR,I), I=i,5 )

WRITE (NUNIT(NCOUNT),*) ( AGEAR(IROT,IGEAR, I), I=i,5 )
CONTINUE

= z

CC

525

JCHECK=JCHECK+ 1

IF ( JCHECK .LT. NROT ) GOTO 515

WRITE (NUNIT(NCOUNT),*) ' GEAR CONNECTION TABLE '

WRITE (NUNIT(NCOUNT),*) ' IROT IGEAR JROT JGEAR
& ITYPE CON '

READ (NUNIT(2),*)

READ (NUNIT(2),*) NL

DO 525 I= I,NL

READ (NUNIT(2),*) IROT, IGEAR, JROT, JGEAR, ITYPE

NCON_GEAR (IROT, IGEAR, JROT, JGEAR) = ITYPE

NCON_GEAR (JROT, JGEAR, IROT, IGEAR) = NCON_GEAR (IROT, IGEAR, JROT, JGEAR)

WRITE (NUNIT(NCOUNT),*) IROT, IGEAR, JROT, JGEAR, ITYPE

& NCON_GEAR (IROT, IGEAR, JROT, JGEAR)
CONTINUE

READ (NUNIT (2) ,*)

READ (NUNIT(2),*)

53O

JCHECK=0

READ (NUNIT(2),*) NTYPE_STIF, NTYPE DAM
READ (NUNIT(2),*)

READ (NUNIT(2),*) ITYPE

READ (NUNIT(2),*) NL, iAGSTIF(ITYPE,I),AGSTIF(ITYPE,2 )



AGSTIF (ITYPE, 3) =0.0

NPOINT (ITYPE) = NL
READ (NUNIT(2),*) (AGSTIF(ITYPE,3+I),STIF_GEAR(ITYPE,I),I=I,NL)

WRITE (NUNIT(NCOUNT) ,*)
WRITE (NUNIT(NCOUNT),*) ' DATA FOR GEAR TYPE ',ITYPE

WRITE (NUNIT(NCOUNT), 532)
& (AGSTIF (ITYPE, 3+I ), STIF_GEAR (ITYPE, I ), I=l, NL)

532 FORMAT(IX, 2F20.4 )

JCHECK= JCHECK + 1

IF ( JCHECK .LT. (NTYPE_STIF+NTYPE_DAM) ) GOTO 530

NTYPE GLOBAL=I

NTYPE= NTYPE STIF + NTYPE GLOBAL
I

READ (NUNIT(2) ,*)

w

533

DO 535 ITYPE=I,NTYPE

READ (NUNIT(2),*)

READ (NUNIT(2),*) ((TMR(ITYPE,IROW,JCOL),JCOL=I,3),IROW=I,3)

WRITE (NUNIT(NCOUNT),*)
WRITE (NUNIT(NCOUNT),*) 'DATA FOR COORD. TRANSFORM TYPE ',ITYPE

WRITE (NUNIT(NCOUNT),533)

& ((TMR(ITYPE,IROW,JCOL),JCOL=I,3),IROW=I,3)

FORMAT( IX, 3FI0.4 )

535 CONTINUE

****************************************

C**** START READING GEAR DAMAGE MODEL *C

DO 1999 I=I,NTYPE

-_ DO 1999 J=I,N30

C NDAM(I,J)= I
1999 CONTINUE

"C

C

2:

C
0

READ (NUNIT(2),*)

READ (NUNIT(2),*) NTYPE_DAM

READ (NUNIT(2),*)
WRITE (NUNIT(NCOUNT),*) ' DAMAGE MODEL '

DO 2200 I=I,NTYPE DAM

READ (NUNIT(2),*) ITYPE,ITER, NEW_ITYPE
NDAM(ITYPE, ITER )= MEW ITYPE

WRITE (NUNIT(NCOUNT),*)--ITYPE,ITER,NDAM(ITYPE, ITER )
C 2200 CONTINUE

-- JCHECK = 0

_C write(66,*) 'before reading of damage'

1050 READ (NUNIT(2),*)

READ (NUNIT(2),*) ITYPE,NTEETH

_ DO I000 I=I,NTEETH

_ ITYPE_DAM(ITYPE,I) = ITYPE
I000 CONTINUE

_CC write(66,*) 'before reading of ndam'

F_ READ (NUNIT(2),*) NDAM

_., WRITE (NUNIT (NCOUNT),

WRITE(NUNIT(NCOUNT),*) 'DAMAGE DATA FOR GEAR TYPE', ITYPE
' NDAM ' NDAMF_ WRITE(NUNIT(NCOUNT),*) 'ITEETH ITYPE_DAM',

_ IF ( NDAM .LE. O) GO TO 1020

DO i010 I=I,NDAM

READ (NUNIT(2),*) ITEETH, ITYPE IDAM

...... ITYPE_DAM(ITYPE,ITEETH) = ITYPE IDAM
WRITE(NUNIT(NCOUNT),*) ITEETH, ITYPE_DAM(ITYPE,ITEETH)

i010 CONTINUE

1020 JCHECK = JCHECK + 1

_j IF (JCHECK .LT. NTYPE_STIF) GO TO 1050



_* END OF GEAR INPUT DATA FROM ABASE.DAT *C

510 CONTINUE

700

FTEMP(IROT,IMODE,I)=

FTEMP(IROT,IMODE,2)=

FTEMP(IROT,IMODE,3)=

FTEMP(IROT,IMODE,4)=

FTEMP(IROT,IMODE,5)=
FTEMP(IROT,IMODE,6)=
CONTINUE

FREQ (IROT, IMODE, i) *0. 1047195

FREQ (IROT, IMODE, I) *0. 1047195

_REQ (IROT, IMODE, i) *0. 1047195

FREQ (IROT, IMODE, i) *0. 1047195
FREQ (IROT, IMODE, 3 )

FREQ (IROT, IMODE, 4 )

WRITE (NUNIT (NCOUNT), *)

i i DO 710 IROT=I,NROT

DO 710 IMODE=I,NMODE(IROT)
DO 710 ICOORD=I,6

FREQ(IROT,IMODE,ICOORD)= FTEMP(IROT,IMODE,ICOORD)

WRITE(NUNIT(NCOUNT),*) ' FREQ ', FREQ(IROT,IMODE,ICOORD)

_710 CONTINUE

WRITE (NUNIT (NCOUNT) ,*I

**********************************************************

_* TABLES FOR CLASSES AND NODES *C

C* NODE NUMBERING *C

WRITE(NUNIT(NCOUNT),*)' INODE, IROT, NODE_LOC(INODE)'

WRITE(NUNIT(NCOUNT),*)

660

DO 650 IROT= I,NROT

w

WRITE(NUNIT(NCOUNT),*) ' BEARINGS NUMBERING
c* NODE NUMBERING FOR BEARINGS

CLASS TABLE(IROT,BEAR)= NBEAR(IROT)

-- DO 660 IBEAR=I,NBEAR(IROT)
NODE TABLE(IROT,BEAR,IBEAR)= INODE

CLASS NODE(INODE)= IROT

NODE LOC(INODE)= LBEAR(IROT,IBEAR)

-- WRITE(NUNIT(NCOUNT),*) INODE, IROT,
INODE= INODE + 1

CONTINUE

WRITE(NUNIT(NCOUNT),* 1 ' GEARS NUMBERING '
C* NODE NUMBERING FOR GEARS

_ CLASS TABLE(IROT,GEAR)= NGEAR(IROT)

-- DO 665 IGEAR=I,NGEAR(IROT)

NODE TABLE(IROT,GEAR, IGEAR)= INODE
CLASS NODE(INODE)= IROT

NODE LOC(INODE)= LGEAR(IROT,IGEAR)

WRITE(NUNIT(NCOUNT),*) INODE, IROT,
INODE= INODE + 1

CONTINUE665

NODE_LOC(INODE)

NODE LOC (INODE)

WRITE (NUNIT (NCOUNT) ,*) ' UNBALANCE NUMBERING
NODE NUMBERING FOR UNBALANCE

CLASS TABLE (IROT,UNBAL) = NUNBAL(IROT)

DO 670 IUNB=I, NUNBAL(IROT)

NODE TABLE (IROT, UNBAL, IUNB) = INODE

CLASS NODE (INODE) = IROT

NODE_LOC (INODE) = ISTAT_UN (IROT, IUNB)



670

AMPL_PHASE (INODE, I) = SQRT ( UNBX (IROT, IUNB) *
& UNBX (IROT, IUNB) +

& UNBY (IROT_ IUNB) *UNBY (IROT, IUNB) )

ATAN2 ( ,AMPL PHASE(INODE,2)= . (UNBY IROT,IUNB) UNBX(IROT,IUNB) )

AMPL_PHASE (INODE, 3 ) PHIADD (IROT, IUNB)

WRITE (NUNIT(NCOUNT) ,*) INODE, IROT, NODE_LOC(INODE)

INODE= INODE + 1

CONTINUE

--650 CONTINUE
N-NODE= INODE-I

4" CHECK
NNODE = INODE-I
DO 222 INODE2=I,NNODE '

WRITE(NUNIT(NCOUNT) ,223) (AMPL_PHASE(INODE2,I) ,I=i,3 )

_223 FORMAT( IX, 3( EI5.7,1X ) )
222 CONTINUE

:* CAN BE MODERNIZE TO RESEMBLE CASING FROM ROTOR

652

DO 652 IROT=I,NROT

CLASS NAME(IROT)= ROTOR
CONTINUE

WRITE (NUNIT (NCOUNT), *)

WRITE (NUNIT (NCOUNT), *)
_* MODE SHAPES

' NNODE = ' NNODEl

DO 620 INODE=I,NNODE

IROT= CLASS NODE (INODE)
ILOC= NODE _OC(INODE)

DO 620 IMODE=I,NMODE(IROT)

SHAPE NODE (INODE, IMODE, i) = SHAPE (IROT, IMODE, ILOC, i)

SHAPE--NODE (INODE, IMODE, 2 )= SHAPE (IROT, IMODE, ILOC, 2 )

SHAPE--NODE (INODE, IMODE, 3 )= SHAPE (IROT, IMODE, ILOC, 1 )

SHAPE--NODE (INODE, IMODE, 4 )= SHAPE (IROT, IMODE, ILOC, 2 )

SHAPE--NODE (INODE, IMODE, 5) = SHAPE (IROT, IMODE, ILOC, 3)

_. SHAPE--NODE (INODE, IMODE, 6) = SHAPE (IROT, IMODE, ILOC, 4 )

WRITE(NUNIT(NCOUNT) ,*) ' INODE ', INODE
_J
_ WRITE(NUNIT(NCOUNT) ,622) (SHAPE_NODE(INODE,IMODE,I),I=i,6)
"_620 CONTINUE

= WRITE (NUNIT (NCOUNT), * )

WRITE(NUNIT(NCOUNT),*) ' INODE IROT ILOC '

DO 630 INODE=I,NNODE

IROT= CLASS_NODE (INODE)
ILOC= NODE LOC(INODE)

WRITE(NUNIT(NCOUNT) ,*) INODE, ' ' ,IROT, ' ',ILOC

630 CONTINUE

**************************************************************

_* NODE CONNECTIONS FOR BEARINGS *C

WRITE (NUNIT (NCOUNT), * )
= WRITE(NUNIT(NCOUNT) ,*) ' NODE CONNECTIONS '

WRITE(NUNIT(NCOUNT),*) ' INODE JNODE ICON '

ICON=I

DO 621 IROT=I,NROT

_* NODE CONNECTIONS FOR BEARINGS

DO 621 IBEAR=I,NBEAR(IROT)

_ DO 629 JROT=I,NROT

IF( JROT .GT. IROT ) GOTO 629



w

DO 629 JBEAR=I, NBEAR (JROT)

624

IF( NCON_BEAR(IROT,IBEAR,JROT,JBEAR) .EQ. 1 ) THEN

-- INODE= NODE_TABLE (IROT, IBEAR, IBEAR)

NODE CON(INODE,I)= l
JNODE= NODE TABLE (JROT, JBEAR,JBEAR)

NODE CON (INODE, 2 )= JNODE
NODE--CON (INODE, 3 )= ICON

WRITE(NUNIT(NCOUNT),*) INODE, JNODE, ICON
* SYMMETRY OF THE CONNECTIONS

NODE CON(JNODE,I)= 1

-- NODE CON (JNODE, 2) = INODE

NODE CON (JNODE, 3) = ICON

WRITE(NUNIT(NCOUNT),*) JNODE, INODE, ICON
___ DO 624 I=i,6

DO 624 J=l,6

STIF_BEAR (ICON, I ,J) = STIF2 (IROT, IBEAR, I ,J)
DAMP_BEAR (ICON, I, J) = DAMP2 (IROT, IBEAR, I, J)

STIF_AV(ICON, I ,J) = STIFA (IROT, IBEAR, I, J)
CONTINUE

ICON= ICON + 1
_ ENDIF

_* DEVELOP CLEAR CONNECTION TABLE, HERE 2= GROUND

IF( NCON BEAR(IROT,IBEAR,JROT,JBEAR) .EQ. 2 ) THEN

INODE= NODE_TABLE (IROT, BEAR, IBEAR)

NODE CON(INODE,I)= 1
_* GROUND CONNECTION

JNODE= NNODE+I

NODE_TABLE (NROT+I, BEAR, i) = JNODE
CLASS_NODE (JNODE) = NROT+I

CLASS_NAME (NROT+ i) = GROUND
o

_625

= =

_629

621

NODE CON (INODE, 2) = JNODE

NODE CON(INODE,3)= ICON

WRITE(NUNIT(NCOUNT) ,*) INODE, JNODE, ICON

DO 625 I=i,6
DO 625 J=l,6

STIF_BEAR(ICON, I,J) = STIF2 (IROT, IBEAR, I,J)

DAMP_BEAR (ICON, I, J) = DAMP2 (IROT, IBEAR, I, J)

STIF AV(ICON,I,J)= STIFA(IROT,IBEAR, I,J)
CONTYNUE

ICON= ICON + 1

ENDIF

CONTINUE

CONTINUE

NCON= ICON-I

C* CHECK

t__ WRITE (NUNIT (NCOUNT), *)
,)

WRITE (NUNIT (NCOUNT),

WRITE (NUNIT (NCOUNT), *) '

_ _ DO 71 ICON=I,NCON

WRITE (NUNIT (NCOUNT)
--71 CONTINUE

WRITE (NUNIT (NCOUNT) , *)

_73

' BEARINGS NCON = ' NCON

STIF__BEAR(IROT,I,J) '

,72) ((STIF_BEAR(ICON,I,J), I=i,6),J=i,6)

WRITE (NUN IT (NCOUNT)

WRITE (NUNIT (NCOUNT)

DO 73 ICON=I,NCON

WRITE(NUNIT(NCOUNT)
CONTINUE

WRITE (NUNIT (NCOUNT)

,*)
,*)' STIF_AV(IROT,I,J) '

,72) ( (STIF_AV(ICON, I,J),

,*)

I=l, 6) ,J=l, 6)

WRITE (NUNIT (NCOUNT), *)



w

_74

WRITE (NUNIT (NCOUNT), * ) ' DAMP_BEAR (IROT, I, J) '
DO 74 ICON=I,NCON

WRITE (NUNIT (NCOUNT) ,72 ) ( (DAMP_BEAR(ICON, I ,J) ,
CONTINUE

WRITE (NUNIT (NCOUNT) ,*)

I=1,6),J=I,6)

72 FORMAT(IX, 6(EI0.4,1X) )

622

627

************************************************

;* CHECK

-- WRITE(NUNIT(NCOUNT) ,*) ' MODE SHAPES FOR ALL NODES '

WRITE(NUNIT(NCOUNT) ,*) ' NNODE = ', N-NODE

DO 627 INODE=I,NNODE

DO 627 IMODE=I,NMODE(1)

WRITE (NUNIT (NCOUNT), 622 ) (SHAPE_NODE (INODE, IMODE, I ), I= i, 6 )
FORMAT(IX, 6(FII.5) )
CONTINUE

WRITE (NUNIT (NCOUNT), *)

ICON= NCON + 1

DO 750 IROT= I,NROT

DO 750 IGEAR= I,NGEAR(IROT)

DO 755 JROT= I,NROT

IF( JROT .EQ. IROT ) GOTO 755

DO 755 JGEAR= I,NGEAR(JROT)

IF(NCON_GEAR(IROT,IGEAR,JROT,JGEAR) .NE. 0 )

INODE= NODE TABLE(IROT,GEAR,IGEAR)
-C* FIX IT LATER= MAKE MULTIPLE CONNECTIONS EASY

NODE CON(INODE,I)=I

-- JNODE= NODE TABLE(JROT,GEAR,JGEAR)

ITYPE= NCON_GEAR(IROT,IGEAR,JROT,JGEAR)

- NODE CON(INODE,2)= JNODE

NODE CON (INODE, 3 )= ICON

__ NODE CON(INODE,4)= ITYPE

NODE CON (INODE, 5) = ITYPE
C* SYMMETRY OF THE CONNECTIONS

NODE CON(JNODE,I)=I '

NODE CON(JNODE,2)=INODE
NODE CON(JNODE,3)=ICON

NODE CON(JNODE,4)= ITYPE

NODE_CON(JNODE,5)= ITYPE

WRITE (NUNIT(NCOUNT), *) ' GEARS

WRITE (NUNIT (NCOUNT) ,* )

CONNECTION

INODE, JNODE, ICON, ITYPE

THEN

ICON= ICON + 1

ENDIF
755 CONTINUE

_ 750 CONTINUE
NCON2= ICON-I-NCON

WRITE (NUNIT (NCOUNT), *)

WRITE (NUNIT (NCOUNT) ,*)

WRITE (NUNIT (NCOUNT), *)

'THERE ARE ' NCON2 ' GEAR
I l

CONNECTIONS'

DO 760 IROT=I,NROT

INODE= NODE__TABLE(IROT,EXTERN, I)



DO 760 IMODE=I,NMODE(IROT)

FEXT (IROT, IMODE, 6 )= TORQUE (IROT) *SHAPE_NODE (INODE, IMODE, 6 )
760 CONTINUE

***********************************

:C* FILE OUTPUT NUMBERING *C
_ K=I

-- DO 24 IROT=I,NROT

NNONE= CLASS TABLE(IROT,NONE)

DO 24 INONE= I,NNONE

NUNIT OUT(IROT,INONE)= K

-- K=K+I
24 CONTINUE

!

__*****************************

DO 205 IROT=I,NROT
TCYCLE (IROT) =60.0/ANGULA (IROT, I)

P 205 CONTINUE

*****************************
TIME=0.0

NCALC= NCYCLE*NPOINTS

IF( NCALC .EQ. 0 ) STOP
NCYCLE OUT=NCYCLE-NCYCLE TRAN

NCALC OUT= (NCYCLE-NCYCLE TRAN)*NPOINTS
NTOTA_ = NCYCLE*NPOINTS*NFACT

Z* GOOD CONVERGENCE IS ABOUT DELTAT=IOE-6 *C

FSAMPLE= ANGULA(I,I)*NPOINTS/60.0
4000 CONTINUE

DELTAT= TCYCLE (I) / (NPOINTS*NFACT)

C

2
_C

IF( DELTAT .GT. IE-6 ) THEN
NFACT= NFACT*2

GOTO 4000

ENDIF

WRITE(NUNIT(NCOUNT) ,*i 'DELTAT= ' ,DELTAT,' NFACT= ',NFACT

OPEN(40,FILE='head.out',STATUS='NEW')

WRITE(40,*) NCYCLE OUT,NCALC OUT,

& --ANGULA(I,Y) ,FSAMPLE

OPEN(41,FILE='head2.out',STATUS='NEW')

WRITE(41,*) NCYCLE_OUT,NCALC_OUT,
& ANGULA(I,I), NPOINTS

_C****** MAIN LOOP ****************C

DO i00 ICALC= I,NCALC

DO 105 IFACT = I,NFACT

DO Ii0 IROT=I,NROT
=2

CC

-2C

CC

IF( ICALC .GT. 2 ) STOP

PRINT *,'BEFORE BEARF'

CALL BEARF( IROT, NODE TABLE, CLASS_TABLE, NODE_CON,
& CLASS NODE, NMODE, --

& SHAPE--NODE,_ STIF_BEAR, STIF_AV, DAMP_BEAR,

& XN, VN, FBEAR )

PRINT *,'BEFORE UNBF'

CALL UNBF( IROT, NODE TABLE, CLASS TABLE, NMODE,

& SHAPE_NODE, ANGULA, AMPL_PHASE, TIME, FUNB )

CC PRINT *,' BEFORE GEARF '

ACUR(IROT)= 360.0*TIME/TCYCLE(IROT)

CALL GEARF( IROT, NODE_TABLE, CLASS_TABLE, NODE_CON,

& CLASS_NODE, NMODE,

& SHAPE_NODE, XN, VN, FGEAR,

& AGEAR, ACUR, STIF_GEAR, NPOINT, AGSTIF, TMR,



C

& GEAR_STIF, ITYPE_DAM )

PRINT *, 'BEFORE EQU'

CALL EQU( IROT, NMODE, FREQ, FUNB, FBEAR, FGEAR,

& XN, AN )

DO 210 IMODE= I, NMODE(IROT)

DO 210 ICOORD=I,6

VNP(IROT,IMODE,ICOORD)= VN(IROT,IMODE,ICOORD)
XNP(IROT,IMODE,ICOORD)= XN(IROT,IMODE,ICOORD)

210 CONTINUE i

CALL EULER( IROT, NMODE, DELTAT, XNP, VNP, AN )

_C PRINT *,'BEFORE BEARF2'

CALL BEARF( IROT, NODE TABLE, CLASS_TABLE, NODE_CON,
& CLASS_NODE, NMODE, --

& SHAPE_NODE, STIF_BEAR, STIF_AV, DAMP_BEAR,
& XNP, VNP, FBEAR )

%..

C

L

PRINT *,'BEFORE UNBF2'

CALL UNBF( IROT, NODE TABLE, CLASS TABLE, NMODE,

& SHAPE_NODE, ANGULA, TLMPL_PHASE, TTME+DELTAT, FUNB )

PRINT *,' BEFORE GEARF2 '

ACUR (IROT) = 360. O* (TIME+DELTAT)/TCYCLE (IROT)

CALL GEARF( IROT, NODE_TABLE, CLASS_TABLE, NODE_CON,
& CLASS NODE, NMODE,

& SHAPE NODE, XNP, VNP, FGEAR,
& AGEAR, ACUR, STIF GEAR, NPOINT, AGSTIF, TMR,

& GEAR_STIF,ITYPE_D_M )

CALL EQU( IROT, NMODE, FREQ, FUNB, FBEAR, FGEAR,

& FEXT, XNP, ANP )

CALL NEWMARK( IROT, NMODE, DELTAT, XN, VN, AN, ANP )

DO 200 IMODE=I,NMODE(IROT)
DO 200 ICOORD=I,6

AN(IROT,IMODE,ICOORD)=0.0

ANP(IROT,IMODE,ICOORD)=0.0
200 CONTINUE

II0 CONTINUE

TIME=TIME + DELTAT

105 CONTINUE

IF ( ICALC .LE. NCYCLE_TRAN*NPOINTS ) GOTO i00

CALL OUTP(NUNIT,NCOUNT,NUNIT_OUT,
& NROT,NMODE, CLASS TABLE,

& NODE_TABLE, SHAPE_NODE, XN,VN )

WRITE(66,*) GEAR_STIF

*************************************************************************

SUBROUTINE BEARF( IROT, NODE_TABLE, CLASS__TABLE, NODE__CON,
& CLASS NODE, NMODE,

& SHAPE__NODE, STIF__BEAR, STIF_AV, DAMP__BEAR, XN, VN, FBEAR )

PARAMETER NONE= 1



PARAMETERUNBAL= 2
PARAMETERBEAR= 3

PARAMETER GEAR= 4

PARAMETER N20=20

PARAMETER N50=50

LC* GLOBAL VARIABLES *C

INTEGER NODE TABLE (N20,5, NS0)

INTEGER CLASS_TABLE (N20, N20)

INTEGER NODE CON(N50,N50)

-- INTEGER CLASS NODE(N50)
INTEGER NMODE_N50 )

_ I

REAL SHAPE NODE(N50,N20,6)

REAL STIF__BEAR(N20,6,6), STIF__AV(N20,6,6)
REAL DAMP__BEAR (N20,6,6 )

REAL XN(N20,N20,6), VN(N20,N20,6)
REAL FBEAR(N20,N20,6), FB(6)

-q* LOCAL VARIABLES *C

_ INTEGER IBEAR, NBEAR, IMODE, ICOORD

REAL Xl(6), VI(6), X2(6), V2(6)

:* INITIALIZE VARIABLES *C

DO 17 IMODE=I,NMODE(IROT)

DO 17 ICOORD=I,6

FBEAR(IROT,IMODE,ICOORD)= 0.0
17 CONTINUE

:* START CALCULATIONS *C

C

i0
.,,,a

---ii0

WRITE(50,*) ' IN BEAR '

NBEAR= CLASS_TABLE (IROT, BEAR)

DO I00 IBEAR= i, NBEAR

DO i0 ICOORD=I,6

XI(ICOORD)= 0.0

Vl (ICOORD) = 0.0
CONTINUE

INODE= NODE_TABLE (IROT, BEAR, IBEAR)

WRITE(50,*) ' INODE ', INODE

DO ii0 IMODE=I,NMODE(IROT)

DO ii0 ICOORD= 1,6
XI(ICOORD)= XI(ICOORD) +

& XN(IROT,IMODE,ICOORD)*SHAPE_NODE(INODE,IMODE,ICOORD)
VI(ICOORD)= VI(ICOORD) +

& VN(IROT,IMODE,ICOORD)*SHAPE_NODE(INODE,IMODE,ICOORD)
CONTINUE

NCON= NODE_CON(INODE,I)

WRITE(50,*) ' NCON ', NCON

• _* LOOP FOR ALL CONNECTIONS *C

DO 120 ICON= 2, 2*NCON+I, 2

JNODE= NODE_CON(INODE,ICON)



JCON= NODE CON(INODE, ICON+I)
JROT= CLASS_NODE(JNODE)

WRITE(50,*) ' IROT INODE JNODE JCON JROT

WRITE(50,*) IROT, INODE, JNODE, JCON, JROT

I*?

2O

FIND CLASS OF THE NODE *C

DO 20 ICOORD=I,6

X2 (ICOORD) = 0.0

V2 (ICOORD) = 0.0
FB (ICOORD) =0.0
CONTINUE

130

DO 130 IMODE= I,NMODE(JROT)

DO 130 ICOORD= 1,6

X2 (ICOORD)= X2 (ICOORD) +
& XN (JROT, IMODE, ICOORD) *SHAPE_NODE (JNODE, IMODE, ICOORD)

V2 (ICOORD)= V2 (ICOORD) +

& VN (JROT, IMODE, ICOORD) *SHAPE_NODE (JNODE, IMODE, ICOORD)
CONTINUE

=

160

150

DO 150 ICOOR_ 1,6
SUMX=0.0

SUMV=0.0

SUMA=0.0

160 JCOORD= 1,6
SUMX= SUMX +

& STIF_BE_(JCON, ICOORD,JCOORD) * ( X1 (JCOORD)
SUMV= SUMV +

& D_PBE_(JCON, ICOORD,JCOORD) * ( Vl (JCOORD)
SUMA= SUMA +"

& STIF AV(JCON, ICOORD,JCOORD)*XI(JCOORD)
CONTI_E

FB(ICOORD)= SUMV + S_X - SUMA
CONTINUE

- X2 (JCOORD))

- V2 (JCOORD))

WRITE(50,*) " FB 1 2 3 4 '

WRITE(50,*) FB(1), FB(2), FB(3), FB(4)

DO 170 IMODE=I,NMODE(IROT)

FBEAR(IROT,IMODE,I)= FBEAR(IROT,IMODE,I)

& SHAPE_NODE (INODE, IMODE, 1 ) *FB (1 )

& SHAPE NODE(INODE,IMODE,2)*FB(2)

FBEAR(IROT,IMODE,2)= FBEAR(IROT,IMODE,I)

+

+

FBEAR(IROT,IMODE,3)= FBEAR(IROT,IMODE,3)

& SHAPE_NODE(INODE,IMODE,3)*FB(3)

& SHAPE_NODE(INODE,IMODE,4)*FB(4)
FBEAR(IROT,IMODE,4)= FBEAR(IROT,IMODE,3)

+

+

FBEAR (IROT, IMODE, 5 )= FBEAR (IROT, IMODE, 5 )

& SHAPE_NODE (INODE, IMODE, 5 ) *FB (5 )

FBEAR (IROT, IMODE, 6 )= FBEAR (IROT, IMODE, 6 )

& SHAPE_NODE (INODE, IMODE, 6 ) *FB (6)

+

+



*************************************************************************

SUBROUTINE UNBF ( IROT, NODE_TABLE, CLASS_TABLE,

& NMODE,
& SHAPE_NODE, ANGULA, AMPL_PHASE, TIME, FUNB )

PARAMETER NONE= 1

PARAMETER UNBAL = 2

PARAMETER BEAR= 3

PARAMETER GEAR= 4

PARAMETER N20=20
PARAMETER N50=50

PARAMETER ID X=l

PARAMETER ID Y=3

PARAMETER PI=3.1415926

-C* GLOBAL VARIABLES *C

INTEGER NODE_TABLE(N20,5,N50)

-_ INTEGER CLASS TABLE(N20,N20)

_ INTEGER NMODE_N50) ,

REAL SHAPE NODE(NS0,N20,6)

_ REAL FUNB(N20,N20,6)

_ REAL TIME

REAL AMPL PHASE(N50,3)

REAL ANGULA(N20,2)

C* LOCAL VARIABLES *C
INTEGER IUNB, NUNB, IMODE, ICOORD

REAL AMPL, PHASE, PHIADD

REAL ARG

REAL SPEED, ANGACL
REAL OMEGA

****************************

L

%..

w

_0
L

SPEED = ANGULA(IROT, i) '

ANGACL = ANGULA (IROT, 2 )

OMEGA=PI*SPEED/30.0

DO i0 IMODE=I,NMODE(IROT)

DO I0 ICOORD=I,6

FUNB(IROT,IMODE,ICOORD)=0.0

FUNB(IROT,IMODE,ICOORD)=0.0
CONTINUE

NUNB= CLASS TABLE(IROT,UNBAL)

PRINT *, NUNB

DO 20 IUNB=I,NUNB

INODE = NODE TABLE(IROT,UNBAL, IUNB)

_C PRINT *, INODE

AMPL= AMPL PHASE(INODE,I)

PHASE = AMPL PHASE(INODE,2)

PHIADD= AMPE PHASE(INODE,3)
ARG= OMEGA*TI--ME + PHASE + PHIADD



w

CC PRINT *, AMPL, PHASE, ARG, OMEGA, TIME

DO 30 IMODE=I,NMODE(IROT)

-CC

30

FUNB (IROT, IMODE, ID_X) =

& AMPL*SHAPE NODE (INODE, IMODE, ID_X) *
& (ANGACL*SIN_ARG) + OMEGA*OMEGA*COS(ARG) )

FUNB (IROT, IMODE, ID_Y) -

& AMPL*SHAPE NODE (INODE, IMODE, ID_Y) *
& (ANGACL*COS_ARG) + OMEGA*OMEGA*SIN(ARG) )

PRINT *, SHAPE_NODE (INODE, IMODE, ID_X), FUNB(IROT, IMODE, ID_X)
CONTINUE

20 CONTINUE

r, GLOBAL VARIABLES *C

INTEGER IROT

INTEGER NMODE(N50)

REAL FREQ (NI0, NI0, NI01
-- REAL FUNB(N20,N20,6)

REAL FBEAR(N20,N20,6)

-_ REAL FGEAR(N20,N20,6)
_ REAL FEXT(N20,N20,6)

REAL XN(N20,N20,6)

REAL AN (N20, N20,6)
_4

_* LOCAL VARIABLES *C

INTEGER ICOORD, IMODE
= =

. ************* THE EQUATIONS OF

C WRITE(50,*) ' IN EQU '

_ DO i00 IMODE=I,NMODE(IRO_)

MOTION *****************************

- i
w

AN(IROT,IMODE,I)= FUNB(IROT,IMODE,I) -

& FBEAR(IROT,IMODE,I) -

& FREQ(IROT,IMODE,I)**2*XN(IROT,IMODE,I)

& FGEAR(IROT,IMODE,I)

AN(IROT,IMODE,2)= AN(IROT,IMODE,I)

AN(IROT,IMODE,3)= FUNB(IROT,IMODE,3) -

& FBEAR(IROT,IMODE,3) -

& FREQ(IROT,IMODE,3)**2*XN(IROT,IMODE,3)

& FGEAR(IROT,IMODE,3)

+

+

AN(IROT,IMODE,4)= AN(IROT,IMODE,3)



AN(IROT,IMODE,5)= -FBEAR(IROT, IMODE,5) -

& FREQ(IROT,IMODE,5)**2*XN(IROT,IMODE,5)

& FGEAR(IROT,IMODE,5)

+

AN(IROT,IMODE,6)= -FBEAR(IROT,IMODE,6) -
& FREQ(IROT,IMODE,6)**2*XN(IROT,IMODE,6)

& FGEAR(IROT,IMODE,6)

& FEXT(IROT,IMODE,6)

+

+

WRITE(50,*) ' IROT IMODE ICOORD FUNB FBEAR '

WRITE(50,*) IROT,IMODE

WRITE(50,*) FUNB(IROT,IMODE,I), -FBEAR(IROT, IMODE,I)

i00 CONTINUE

PARAMETER N20=20

PARAMETER N50=50

INTEGER NMODE (N50)

REAL H,DELTAT

REAL XN(N20,N20,6), V_(N20,N20,6), AN(N20,N20,6)

REAL XNP(N20,N20,6), VNP(N20,N20,6)

INTEGER IMODE, ICOORD

_-_0

i0

_30

H=DELTAT

DO I0 IMODE= I,NMODE(IROT)

DO 20 ICOORD=I,6

VNP(IROT,IMODE,ICOORDI= VN(IROT,IMODE,ICOORD) +

& ' H*AN(IROT,IMODE,ICOORD)

XNP(IROT,IMODE,ICOORD)= XN(IROT,IMODE,ICOORD) +

& 0.5*H*(VNP(IROT,IMODE,ICOORD) + VN(IROT,IMODE,ICOORD)
CONTINUE

CONTINUE

DO 30 IMODE= I,NMODE(IROT)

DO 30 ICOORD=I,6

VN(IROT,IMODE,ICOORD)_ VNP(IROT,IMODE,ICOORD)

XN(IROT,IMODE,ICOORD)= XNP(IROT,IMODE,ICOORD)
CONTINUE

INTEGER NMODE(N50)

REAL H, DELTAT



REAL
REAL

XN(N20, N20,6) ,
ANP(N20, N20,6)

VN(N20,N20,6) , AN(N20,N20,6)

INTEGER IMODE, ICOORD
REAL BETA

BETA=0.167

C******* NEWMARK-BETA
H=DELTAT

METHOD

DO 20 IMODE= I,NMODE(IROT)
DO 20 ICOORD=I,6

XN(IROT,IMODE,ICOORD)=XN(IROT,IMODE,ICOORD) +
& VN(IROT,IMODE,ICOORD)*H +
& (0.5 - BETA )*AN(IROT,IMODE,ICOORD)*H*H +
& BETA*ANP(IROT,IMODE,ICOORD)*H*H
VN(IROT,IMODE,ICOORD)=VN(IROT,IMODE,ICOORD) +

& 0.5*H*( AN(IROT, IMODE,ICOORD)+ANP(IROT,IMODE,ICOORD)

20 CONTINUE

RETURN
END

*****************************************************************
*********************************************************

C*************** SUBROUTINE OUTPUT **********************
[_*** OUTPUT AND POST-PROCESSING OF THE RESULTS ******C

SUBROUTINE OUTP(NUNIT,NCOUNT,NUNIT OUT,

& NROT,NMODE, CLASS TABLE,

& NODE_TABLE, SHAPEZNODE , XN,VN )

PARAMETER NONE= 1

PARAMETER UNBAL= 2

PARAMETER BEAR= 3

PARAMETER GEAR= 4

PARAMETER NI0=I0

PARAMETER N20=20

PARAMETER N50=50

PARAMETER SC=I0000

2

w

INTEGER NUNIT (NL0)

INTEGER NUNIT_OUT(N20,N20)
INTEGER NMODE (NL0)
INTEGER JSTAT, IUNIT

INTEGER NROT, IROT, INODE, IMODE

INTEGER NODE_TABLE(N20,5,NL0)

INTEGER CLASS_TABLE(N20,N20)

REAL SHAPE_NODE (NL0, N20,6)

REAL XN(N20,N20,6), VN(N20,N20,6)
REAL XD(6), VD(6)

IROT=0

IUNIT=0

DO I0 IROT=I,NROT

NNONE= CLASS TABLE(IROT,NONE)
DO I0 INONE=I,NNONE

90 30 ICOORD=I,6

XD(ICOORD)=0.0

VD(ICOORD)=0.O



30 CONTINUE

2O

w

i00

INODE= NODE_TABLE(IROT,NONE,INONE)

DO 20 IMODE=I,NMODE(IROT)
DO 20 ICOORD=I,6

XD(ICOORD)= XD(ICOORD) +

& XN(IROT,IMODE,ICOORD)*SHAPE_NODE(INODE,IMODE,ICOORD)

VD(ICOORD)= VD(ICOORD) +

& VN(IROT,IMODE,ICOORD)*SHAPE_NODE(INODE,IMODE,ICOORD)
CONTINUE

IUNIT= NUNIT OUT(IROT,INONE)

WRITE (NUNIT (NCOUNT+IUNIT) ,*) XD (3)

FORMAT( lX, 2(GI5.9,1X) )

10 CONTINUE

RETU_
END

*************************************************************************

•*************************************************************************

C* CODE FOR GEAR FORCE SUBROUTINE

*************************************************************************

SUBROUTINE GEARF (IROT_ NODE__TABLE, CLASS_TABLE, NODE__CON,

& CLASS__NODE, NMODE,
& SHAPE__NODE, XN, VN, FGEAR,

& AGEAR, ACUR, STIF__GEAR, NPOINT, AGSTIF, TMR, GEAR_STIF,

& ITYPE__DAM )

PARAMETER NONE= 1

PARAMETER UNBAL= 2

PARAMETER BEAR= 3

PARAMETER GEAR= 4

PARAMETER NI0=I0

PARAMETER N20=20

PARAMETER N50=50

PARAMETER N120=120

PARAMETER PI=3.1415926

_* GLOBAL VARIABLES *C

INTEGER NODE TABLE(N20,5,N50)

INTEGER CLASS__TABLE(N20,N20)

INTEGER NODE CON(N50,N50)
INTEGER CLASS NODE(N50)

INTEGER NMODE_N50) p

INTEGER NPOINT(N20)

INTEGER ITYPE_DAM(N50,N50)

REAL SHAPE NODE(N50,N20,6)
REAL XN(N20,N20,6), VN(N20,N20,6)

REAL FGEAR(N20,N20,6)

REAL AGEAR(N20,N20,NI0), AGSTIF(N20,NI20)

REAL STIF_GEAR(n20,nI20)
REAL TMR(N20,3,3)

REAL ACUR(N20)

*******************************************************************

INTEGER NGEAR

_ INTEGER INODE, JNODE, ICON, JCON, IROT

INTEGER AXE, RAD

REAL PHIN, PSI, GAMA, ALPHA



REAL SX, SV, FG(6), FX,FY,FZ,FN,
REAL F__RADIAL, F__TANG,F__AXIAL
REAL RI, R2
REAL GEAR STIF
REAL DX, DY, DROT

DLENGTH

REAL XI(6), Vl(6), X2(6), V2(6)
REAL X21(6), V21(6)

:* INITIALIZE VARIABLES *C
--*******************************************************************

DO 17 IMODE=I,NMODE(IROT)

DO 17 ICOORD=I,6

FGEAR(IROT,IMODE,ICOORD)= 0.0
17 CONTINUE

DO i00 IGEAR= i, NGEAR

DO i0 ICOORD=I,6
XI(ICOORD)= 0.0

Vl (ICOORD) = 0.0
_ i0 CONTINUE

************************************************

RI= AGEAR(IROT,IGEAR, I)

C* ALL ANGLES IN THE INPUT WERE IN THE DEGREES

_"_* TRANSFORM ALL ANGLES INTO RADIANS

DO Ii I=2,5

AGEAR (IROT, IGEAR, I )= PI*AGEAR (IROT, IGEAR, I )/ 180.0
ii CONTINUE

J

PHIN= AGEAR(IROT, IGEAR, 2)

PSI= AGEAR (IROT, IGEAR, 3)

_! GAMA= AGEAR (IROT, IGEAR, 4 )
ALPHA=AGEAR (IROT, IGEAR, 5 )

*********************************

_ INODE= NODE_TABLE (IROT, GEAR, IGEAR)

_20

DO 20 IMODE=I,NMODE(IROT)
DO 20 ICOORD= 1,6

XI(ICOORD)= XI(ICOORD) +

& XN (IROT, IMODE, ICOORD) *SHAPE_NODE (INODE, IMODE, ICOORD)
Vl (ICOORD)= Vl (ICOORD) +

& VN (IROT, IMODE, ICOORD) *SHAPE_NODE (INODE, IMODE, ICOORD)
CONTINUE

NCON= NODE_CON (INODE, I)

LOOP FOR ALL CONNECTIONS *C

DO ii0 ICON= 2,

FIND CONNECTION

2*NCON+2, 3

JNODE= NODE_CON(INODE,ICON)



._C

:C

JCON= NODE_CON(INODE,ICON+I)
JTYPE= NODE_CON(JNODE,ICON+2)

ITYPE_ORG = NODE_CON(JNODE,ICON+3)
ITYPE= JTYPE

JROT= CLASS_NODE(JNODE)

WRITE(66,*) INODE, JNODE, JCON, ITYPE

C* WORK HERE : CHECK IT AGAIN YOU CAN PUT IT BEFORE

NGEAR2= CLASS_TABLE(JROT,GEAR)
DO 25 JGEAR=I,NGEAR2

IF( JNODE .EQ. NODE TABLE(JROT,GEAR,JGEAR) )
& R2= AGEAR(JROT,JGEAR, I)

25 CONTINUE

BIG LOOP

C* AS A REFERNCE GEAR IS TAKEN THE ONE WITH SMALLER RADIUS

ANGLE= ACIrR (IROT)
IF( R1 .GT. R2 ) ANGLE= ACUR(JROT)

GEAR STIF=0.0

NP= NPOINT (ITYPE)

: C WRITE(66,*) 'ITYPE= ' ITYPE ' ANGLE= ' ANGLE
_jC PRINT * , 'BEFORE GSTIF'

CALL GSTIF (ITYPE, NP, AGSTIF, ANGLE, STIF_GEAR, GEAR_STIF,
& ITYPE_DAM, JTYPE )

C IF (ITYPE .NE. JTYPE) ITYPE = JTYPE
-_C PRINT * , 'AFTER GSTIF'
CC WRITE(66,*) 'GEAR STIF= ', GEAR STIF

-C IF (ITYPE .NE. JTYPE) NODE CON(JNODE, ICON+2) =ITYPE
******************************************************************

_* INITIALIZE VARIABLES *C

*******************************************************************

:_ DO 30 ICOORD=I,6
X2 (ICOORD) = 0.0
X21 (ICOORD) = 0.0
V2 (ICOORD) = 0.0
V21 (ICOORD) = 0.0

_-30 CONTINUE

_: DO 40 IMODE= I,NMODE(JROT)
_ _ DO 40 ICOORD= 1,6

X2 (ICOORD) = X2 (ICOORD) +
& XN(JROT,IMODE,ICOORD)*SHAPE NODE(JNODE,IMODE,ICOORD)

X V2 (ICOORD)= V2 (ICOORD) +

_X & VN (JROT, IMODE, ICOORD) *SHAPE_NODE (JNODE, IMODE, ICOORD)
40 CONTINUE

*******************************************************************

*******************************************************************

C* COORDINATE TRANSFORMATION OF J-GEAR'S SHAFT COORDINATES INTO *C
5[* I-GEAR'S SHAFT COORDINATES *C
-******************************************************************

_* TRANSFORMATION OF X, Y, Z COORDINATES. ANGLES ARE INVARIANT TO
_, COORDINATE TRANSFORMATION.



DO 50 I COORD= 1,6, 2
SX= 0.0
SV= 0.0

I

DO 51 JCOORD= 1,6, 2

SX= SX + TMR (JTYPE, ICOORD, JCOORD) *X2 (JCOORD)
mC SV= SV + TMR (JTYPE, ICOORD, JCOORD) *V2 (JCOORD)
51 CONTINUE

X21 (ICOORD) = SX

CC V21 (ICOORD)= SV
50 CONTINUE

* ANGLES REMAIN UNCHANGED, I.E. X21(angles coord)= X2(angles coord)

DO 52 ICOORD = 2,6, 2

X21 (ICOORD) = X2 (ICOORD)
52 CONTINUE

WRITE(66,*) 'DIF ',X2(1)-X21(1) , X2(3)-X21(3)

DX= X1 (I) -X21 (i)

DY= X1 (3)-X21 (3)

DROT= RI*XI(6)-R2*X21(6)

DLENGTH= (DX*COS(PHIN) + DY*SIN(PHIN) ) +

& DROT*COS(PHIN)

WRITE(66,*) 'IROT ',IROT,' DL = ',DLENGTH

WRITE(66,*) 'DX ', DX, ' DY ', DY, ' DROT ',DROT

_X

X
_X

DVELOSITY= (Vl(1)-V21(1) )*COS(PHIN) +

& (VI(3)-V21(3) )*SIN(PHIN) +

& (RI*SPEED(IROT)-R2*SPEED(JROT) )*COS(PHIN)

-******************************************************************

* CALCULATE THE GEAR FORCE AT CONTACT POINT *C

*******************************************************************

C GEAR_STIF (JCON)

FN= -GEAR STIF*DLENGTH

_C WRITE(66,*) ' IROT= ' IROT,' FN= ' FNF f f

C WRITE(66,*) ' GEAR ST ' GEAR STIF

*******************************************************************

FX=0.0

FY=0.0
FZ=0.0

DO 12 I=I,6

12 FG(I)=0.0

*******************************************************************

C2 PHIN - PRESSURE ANGLE

_* PSI - HELIX ANGLE

_* GAMA - PITCH ANGLE

C* ALPHA - CONTACT POINT ANGLE

F TANG= FX

C* F RADIAL = FY

C* F AXIAL= FZ

!!_ CONTACT POINT COORDINATE SYSTEM TRANSFORMATION *C

F RADIAL= FN*SIN(PHIN)

F TANG= FN*COS (PHIN) *COS (PSI)

F_AXIAL= FN*SIN (PHIN) *SIN (PSI)



w

FX= F RADIAL
FY= F TANG

FZ= F AXIAL

C* IN PLANE YZ COORDINATE TRANSFORMATION *C

AXE= 1

-- RAD= 1

CALL PLANE( FX, FY, FZ, GAMA, AXE, RAD )
_* IN PLANE XY COORDINATE TRANSFORMATION *C

AXE= 3

-- RAD=I

CALL PLANE( FX, FY, FZ, ALPHA, AXE, RAD )

FG(1) = FX
FG(2) = FG(1)

FG(3) = FY

FG(4) = FG(3)

FG(5) = FZ

70

DO 70 IMODE=I,NMODE (IROT)

DO 70 ICOORD=I,5,2
FGEAR(IROT, IMODE, ICOORD) = FGEAR(IROT, IMODE, ICOORD) +

& SHAPE_NODE (INODE, IMODE, ICOORD) *FG (ICOORD)
CONTINUE

75

DO 75 IMODE=I,NMODE(IROT)

FGEAR(IROT,IMODE,6)= FGEAR(IROT,IMODE,6) +

& SHAPE_NODE(INODE,IMODE,6)*FY*RI
CONTINUE

II0 CONTINUE

I00 CONTINUE

PARAMETER NI0=I0

PARAMETER N20=20

PARAMETER N50=50

PARAMETER N120=120

INTEGER ITYPE, NPOINT, JTYPE

INTEGER ITYPE_DAM(N50,NS0)

REAL AGSTIF(N20,NI20), ANGLE

REAL STIF_GEAR(n20,nI20)
REAL GEAR STIF

*************************

INTEGER IPOINT

REAL A, B, ARATIO, SDIF, AMAX

_** F*** REWRITE WITH FORTRAN FUNCTIONS : MOD & ETC. *C

C WRITE (66,*) 'ANGLE= ', ANGLE



i0

ITEETH = 1

IF( ANGLE .GE. 360.0 ) THEN
ANGLE= ANGLE -360.0

ITEETH = 1

GOTO i0

ENDIF

2O

25

3O

IF ( ANGLE .GE. 0.0 ) GOTO 25
ANGLE= ANGLE + 360.0

ITEETH = 1
GOTO 20

40

rC

CONTINUE

AMAX= AGSTIF(ITYPE, i)

IF ( ANGLE .LE. AMAX ) GOTO 40
ANGLE= ANGLE - AMAX
ITEETH = ITEETH +i

GOTO 30

CONTINUE

IF ( ITEETH .GE. 28) PRINT * , 'ITEETH & ANGLE=

IF ( ITYPE DAM(JTYPE,ITEETH) .NE. ITYPE) THEN

-- ITYPE = ITYPE_DAM(JTYPE,ITEETH)
END IF

_****************C

C

' , ITEETH,ANGLE

if (iteeth .EQ. i0) then

write(66,*) 'itype', itype, 'iteeth', iteeth,'jtype', jtype
write(66,*) 'angle', angle

write(66,*) 'stif_gear', (stif_gear(itype, i),i=l,100)
end if

GEAR_STIF= STIF_GEAR(ITYPE,I)

* THERE IS A BUG = FIND & FIX-- RUN

__ DO 50 IPOINT= 2,NPOINT

IF( ( ANGLE .GE. AGSTIF(ITYPE, 3+IPOINT) )
& .AND.

& ( ANGLE .LT. AGSTIF(ITYPE, 4+IPOINT) ) ) THEN

A= ANGLE - AGSTIF(ITYPE,3+IPOINT)

B= AGSTIF(ITYPE,4+IPOINT) - AGSTIF(ITYPE,3+IPOINT)

ARATIO= A/B

SDIF= STIF_GEAR(ITYPE,IPOINT) - STIF_GEAR(ITYPE,IPOINT-I)

GEAR_STIF= STIF_GEAR(ITYPE,IPOINT-I) + SDIF*ARATIO

ENDIF

I J

50 CONTINUE
F!

WRITE (66,*) 'ITEETH= ' ITEETHt

ITYPE = JTYPE

_ RETURN

-- END
*******************************************************************

*******************************************************************

* SUBROUTINE FOR IN-PLANE COORDINATE TRANSFORMATION *C

******************************************************************

SUBROUTINE PLANE( X, Y, Z, ANGLE, AXE, RAD )
PARAMETER PI=3.14

INTEGER AXE, DIR, RAD
REAL X, Y, Z, ANGLE

REAL OLD_A, OLD__B, OLD__C

_ REAL NEW A, NEW__B, NEW__C

IF( RAD .EQ. 0 ) ANGLE= PI*ANGLE/180.0

_ DIR= IABS (AXE)/AXE



i :

IF( AXE .EQ. 1 ) THEN
OLD A= Y

OLD B= Z

OLD C= X
ENDIF

IF( AXE .EQ. 2 ) THEN
OLD A= X

OLD--B = Z

OLD--C= Y

ENDTF

IF( AXE .EQ. 3 ) THEN
OLD A = X

OLD B= Y

OLD C= Z
ENDIF

NEW A= OLD A.COS(ANGLE) - OLD B'SIN(ANGLE)

NEW--B= OLD--A.SIN(ANGLE) + OLDZB*COS(ANGLE)
NEW--C= DIRWOLD C

IF( AXE .EQ. 1 ) THEN
Y= NEW A
Z= NEW--B

X= NEW C

ENDIF

IF( AXE .EQ. 2 ) THEN
X= NEW A

Z= NEW B

Y= NEW C

ENDIF

IF( AXE .EQ. 3 ) THEN
X= NEW A

Y= NEW B

Z= NEW C

ENDIF



*************************************************************************
************************* " THE FINAL INSULT " **************************
*************************************************************************

_ SUBROUTINE LAT(NUNIT,NCOUNT,NROT,NSTAT,NBEA/_,LBEAR,STIF2,

& DAMP2,STIFA,FREQ,SHAPE,NMODE,NCON_BEAR,NSWITCH)
PARAMETER NROT SIZE=I0
PARAMETER NSTAT SIZE=I00

-- PARAMETER NI00=I00

PARAMETER N50=50

PARAMETER N20=20

PARAMETER NI0=I0

-- PARAMETER N5=5

INTEGER

INTEGER

INTEGER

INTEGER

_: INTEGER
INTEGER

NMODE (N50)

NM(N50)
N-ROT

NUNIT (N20) ,NSTAT (N-ROT_SIZE)

NBEAR(NROT SIZE), LBEAR(NROT_SIZE, I0)
NSWITCH (N 15)

= :

REAL

REAL

REAL

REAL

SHAPE(N50,N50,N5_,4)FREQ(NI0,NI0,NIO

LMODE(NROT_SIZE,NI0,NSTAT_SIZE)

SLOPE(NROTSIZE,N10,NSTAT_SIZE)

INTEGER
INTEGER

REAL

REAL

REAL

REAL

REAL

REAL

N, NB, NNCT
NBC

SPI,SPL, DSP,DDIN

CRT (NI0)
TCRT(NI0,NS)

DDPC(NI0,NI00),EEYTH(NI0,NI00)
TDMY(NI0,NIO,N5),TEEYTH(NI0,NI00,N5)

TW(NI00,5),TWMOD(N50,N5)

REAL AKK (NI0), TAKK (NI0, N5 ), AKRR (NI0), TAKR (NI0, N5 )

_ REAL

"" REAL

REAL
= :

_ REAL
:- REAL

REAL

__ REAL
REAL

REAL

REAL

_ REAL

_ REAL
REAL

REAL

L_

DEFL(NIO0), EYTH(NI00), WMOD(NIO0), TMX(NI00,NI00)
EYI(NI00), EY2(NI00)

DPC(NI00), EANI(NI00), EAN2(NI00)

KXX(NI0), KYY(NI0),KRX(NI0), KRY(NI0)

TDDPC(NI0,NI00,NS)

SHAFT WEIGHT(NSTAT SIZE),TOTAL_WEIGHT, W(NSTAT_SIZE)

EXTEP_AL_WEIGHT(_STAT_SIZE), WEIGHT_STAT(NSTAT_SIZE)

DOUT(NSTAT_SIZE),DIN(NSTAT_SIZE)

ITRANS(NSTAT_SIZE),IPOLAR(NSTAT_SIZE)

DX(NSTAT_SIZE),RO(NSTAT_SIZE)

EI(NSTAT_SIZE),INERTIA(NSTAT_SIZE)

EM(NSTAT_SIZE)
STIF BEAR(NROT SIZE,N10,6,6)

DAMP_BEAR(NROT_SIZE,NI0,6,6)

REAL STIF2(NROT_SIZE,NI0,6,6), STIFA(NROT_SIZE,NI0,6,6)

REAL DAMP2(NROT_SIZE,NI0,6,6)

**-***********************************************************

--. REAL WJ(NSTAT_SIZE),GJ(NSTAT_SIZE)

REAL GGO(NSTAT_SIZE),TK(NSTAT SIZE)

_:: REAL AT (N5, N5 )

-- REAL FFR(NI0),FV(NI00,NI0),TV(NI00,NI0),WF(NI00,NI00)

-- REAL FR(NI0,N5),FFV(NI0,NI00,NS)

REAL ZF(NI0,N5),ZFV(NI0,NI00,N5)

REAL SPI,SP2,SP3
- ******************************************************************

C** FOR SYSTEM NATURAL FREQ. CALCULATIONS ******************C

__ REAL AK,AKR, STIF AV(NIO,NI0,4,4)

REAL FMODE(NI0,NIS, 4)_ SBARK, SBARC

I



w

REAL KBAR(NI0,NI0) ,CBAR(NI0,NI0)
REAL K2BAR(NI0,NI0),C2BAR(NI0,NI0)

REAL AGLOB(10,24,24),ASUPER(NI00,NI00)

INTEGER NCON_BEAR (NI0, NI0, NI0, NI0)
************************** INPUT DATA ****************************

*******************************************************************

************************** START MAIN BODY ************************
,.._.

IROT=I

READ (NUNIT(1),*)

READ (NUNIT(1),*) NROT

C********** START ENTERING SHAFT AND BEARINGS DATA ***************C
i0 CONTINUE

• READ (NUNIT(1) ,*)

READ (NUNIT(1),*)

READ (NUNIT(1) ,*) NSTAT(IROT)

READ (NUNIT(1) ,*)

' : READ (NUNIT(1),*) ( EXTERNAL WEIGHT(J),DX(J),DOUT(J),DIN(J),

+ IPOLAR (J) , ITRANS (J) ,EM (J) ,RO (J) ,SSO (J) ,TK(J) , J=l, NSTAT (IROT)
_ READ (NUNIT(1) ,*)

READ (NUNIT (i) ,*)

"-" READ (NUNIT(1),*) NBEAR(IROT)

READ (NUNIT (i) ,*)

7 READ (NUNIT(1),*) ( LBEAR(IROT, IBEAR),IBEAR=I,NBEAR(IROT) )
__ DO 20 IBEAR=I,NBEAR(IROT)

READ (NUNIT(1) ,*)
READ (NUNIT (I) , *)

READ (NUNIT(1),*) ((
l_ READ (NUNIT(1),*)

READ (NUNIT(1),*) ((
20 CONTINUE

_ _ READ (NUNIT(1),*)
-- READ (NUNIT (I) ,*)

READ (NUNIT(1),*)

READ (NUNIT(1),,)

_ READ (NUNIT (i) , *)

STIF_BEAR (IROT, IBEAR, I,J) ,J=l, 6), I=l, 6)

DAMP_BEAR (IROT, IBEAR, I,J) ,J=l, 6) ,I=l, 6)

l

 MObE(IROT),SPI,SPL, DSP

NBC

CCC NMODE (IROT) =3

_**************************************************************

C*** INITIALIZE MODE SHAPES AND FREQUENCIES *****************C

r DO 70 ISPEED=I,NMODE(IROT)

FREQ (IROT, ISPEED, i) = 0.0

DO 70 ISTAT=I,NSTAT(IROT)

SHAPE (IROT, ISPEED, ISTAT, i) = 0.0

_°__ SHAPE (IROT, ISPEED, ISTAT, 2) = 0.0
0 CONTINUE

C*****

*
C*
,",***,,

f_

--30

*********************************************************
**************************

* CALCULATE EFFECTIVE INERTIA MOMENT OF ROTORS *
**************************

*********************************************************

PI=3. 14159

E=EM (1 )

DO 30 I=I,NSTAT(IROT)

INERTIA(I)= PI*( DOUT(I)**4 - DIN(I) **4 )/64
EI(I)= E'INERTIA(I)

SHAFT_WEIGHT(I)= PI*( DOUT(I)**2 - DIN(I) **2 )*DX(I)*RO(I)/4

W(1)= SHAFT_WEIGHT(1)/2.0

TOTAL_WEIGHT= W (1 )

TOTAL_LENGTH= DX (I)

+ EXTERNAL_WEIGHT (i)

- DO 40 I=2,NSTAT(IROT)



4O

J

WEIGHT_STAT(I)= SHAFT_WEIGHT(I-I)/2.0 + SHAFT_WEIGHT(I)/2.0
& + EXTERNAL_WEIGHT(I)

W(I)= WEIGHT_STAT(I) i

TOTAL WEIGHT= TOTAL W_IGHT + WEIGHT STAT(I)
TOTAL--LENGTH= TOTAL--LENGTH + DX (I ) --
CONTINUE

IPOLAR(1)= IPOLAR(1) + INERTIA(1)*RO(1)*DX(1)

ITRANS(1)= ITRANS(1) +

SHAFT WEIGHT(l)*(( DOUT(1)**2.0 + DIN(1)**2.0 )/16.0 +
(( DXTI)I2.0 )**2.0 )/3.0 )/2.0

DO 50 I=2,NSTAT(IROT)

IPOLAR(I)= IPOLAR(I) + RO(I)*INERTIA(I)*DX(I) +

-- & INERTIA(I-l) *DX (I-l) *RO (I-l)
ITRANS (I) = ITRANS (I) +

& SHAFT WEIGHT(I)*((DOUT(I)**2.0+DIN(I)**2.0)/16.0 +
& (( DX_I)I2.0 )**2.0 )/3.0 )/2.0 +

-- & SHAFT_WEIGHT(I-I)*((DOUT(I-I)**2.0+DIN(I-I)**2.0)/16.0 +

& (( DX(I-I)I2.0 )**2.0 )/3.0 )12.0
50 CONTINUE

*********************************************************************
q_*************** OUTPUT SHAFT DATA CALCULATIONS *********************

WRITE (NUNIT(NCOUNT), _,)

WRITE (NUNIT(NCOUNT),*) ' DATA FOR ROTOR ', ' #', IROT

_ WRITE (NUNIT(NCOUNT) ,_,)

WRITE (NUNIT(NCOUNT),*) ' I W(I) DX(I) DOUT(I) DIN(I) INERTIA(I)
1 IPOLAR(I) ITRANS(I) EI(I) '

WRITE (NUNIT(NCOUNT), *)

WRITE (NUNIT(NCOUNT),61) (I,W(I),DX(I),DOUT(I),DIN(I),INERTIA(I),

1 IPOLAR(I),ITRANS(I),EI(I) , I=I,NSTAT(IROT) )
WRITE (NUNIT (NCOUNT) ,*)

WRITE (NUNIT(NCOUNT),*) 'TOTAL WEIGHT ' 'TOTAL LENGTH 'l

-- WRITE (NUNIT(NCOUNT), *) TOTAL_WEIGHT , TOTAL_LENGTH
WRITE (NUNIT(NCOUNT), *)

DO 621 IBEAR=I,NBEAR(IROT)

_ KXX (IBEAR) = STIF_BEAR(IROT, IBEAR, I, I)
KYY(IBEAR) = STIF BEAR(IROT, IBEAR, 3,3)

KRX (IBEAR) = STIF--BEAR (IROT, IBEAR, 2,2 )

KRY (IBEAR) = STIF--BEAR(IROT, IBEAR, 4,4)

-- WRITE (NUNIT(NCOUNT),*)'BEARING STIFFNESS IN X- AND Y- DIRECTIONS'

WRITE (NUNIT(NCOUNT),*) ' KXX ', ' KYY '

WRITE (NUNIT(NCOUNT), ¢) KXX(IBEAR) , ' ',KYY(IBEAR)
_ WRITE (NUNIT(NCOUNT),_',)' AVERAGE SPRING BEARING STIFFNESS '

WRITE (NUNIT(NCOUNT),-_i 0. 5* (KXX(IBEAR) + KYY(IBEAR))

WRITE(NUNITCNCO TI,*)'AVERAGEROTATIONALBEARINGSTIFFNESS'
WRITE (NUNIT(NCOUNT),_) 0. 5* (_(IBEAR) + KRY(IBEAR))
CONTINUE_621

WRITE (NUNIT(NCOUNT),*) ' DATA FOR LATERAL MODE CALCULATIONS:'

* SPI=INITIAL SPEED,SPL=FINAL SPEED,DSP=SPEED INCREMENT-RPM *C

-- WRITE (NUNIT(NCOUNT),*) 'SPI',' SPL ',' DSP '

WRITE (NUNIT(NCOUNT),*) SPI, SPL, DSP
=_ WRITE (NUNIT(NCOUNT),*) ' TYPE OF BOUNDARY CONDITIONS '

WRITE (NUNIT(NCOUNT),*) NBC

********************** PART TWO *******************************

****************************************************************
***********************

C * CALCULATE ROTOR'S LATERAL MODAL SHAPE *
***********************

***************************************************************

*********************************************************
I

C* NC=LOCAL CRITICAL SPEED .NO. *C
NC= 1 I

MA=0 i



MB=0
LN=I
LN=LN+3
DDIN=DSP
SPD=SPI

DETP=-O.

-C******* START LOOP 290-610

290 I=l

BOO

i0

2O

330

40

_50

6O

J=l

SPSQ=SPD*SPD

ANSP=SPD*O. 10471976
ANSP2=ANSP*ANSP !

VP=0.

ZMP=0.

EYP=0.

ETHP=I. 0

M=I
I=I+l

II=I-I

IF (II-LBEAR(IROT,J))

AK= (KXX (J) +KYY (J))/2.0
AKR= (KRX (J) +KRY (J))/2.

AKK (J) =AM

AKRR (J) =AKR

TAKK (J, IROT) =AKK (J)

TAKR (J, IROT) =AKRR (J)

*********C

330,310,330

GO TO 360

GO TO 370

ZM=ZMP+DX (I-l) *VP
V=VP

IF (M.EQ.2) GO TO 350
EYI (I) =EY

EANI (I )=ETH

IF (I. ST. NSTAT (IROT))
ZMP=ZM
VP=V

EYP=EY

ETHP=ETH

GO TO 300

EY2 (I )=EY

EAN2 (I )=ETH
ZMP=ZM

VP=V

EYP=EY

ETHP=ETH

IF (I.ST.NSTAT (IROT))
GO TO 300

M=2

ZMI=ZM

VRI=V

J=l

I=l

EY P= 1.

ZMP=0.

ETHP=0.

VP=0.

IF (J-NBEAR(IROT)) 320,340,340
J=J+l

GO TO 340

AK=0.0

AKR= 0.0

VP=VP+ (W (I-l) *ANSP2/386.4-AK) *EYP

ZMP=ZMP+AKR*ETHP-ANSP2* (ITRANS (I-l)) *ETHP/386.4
EY=EYP+DX (I-l) *ETHP+DX (I-l) **2*ZMP/(2. E6*EI (I-l) ) +

1 DX(I-I) **3*VP/(6. E6*EI (I-l))

ETH=ETHP+DX (I-l) *ZMP/(I. E6*EI (I-l)) +

1 DX (I-l) **2*VP/(2.E6*EI (I-l))



-- GO TO 300
370 DET=VRI* ZM-V* ZMI

IF (ABS(DETP).LT.0.0001) GO TO 420
_ IF (MA.EQ.I) GO TO 400

IF (ABS(DET).LT.I.) GO TO 450
IF (DETP*DET) 380,420,420

s80 DOLD=DETP
-J90 MA=I

IF (ABS(DET).LT.I.) GO TO 450
IF (DDIN.LT.I.E-6) GO TO 450
DDIN=DDIN/2.

-- DETPP=DETP
DETP=DET
SPD=SPD-DDIN
GO TO 290

_00 IF (ASS(DET).LT.I.) GO TO 450
IF (DOLD*DET) 390,420,410
CONTINUE
IF (ABS(DET).LT.I.) GO TO 450
IF (DDIN.LT.I.E-6) GO TO 450
DDIN=DDIN/2.
SPD=SPD+DDIN
DETPP=DETP
DETP=DET
GO TO 290

20 IF (LN-54) 440,440,430
-430 CONTINUE

LN=I
' 40 CONTINUE
__ LN=LN+1

S PD=S PD+ DS P

DDIN=DSP

IF(NC.GT.NMODE(IROT)) GO TO 610

IF (SPD.GT.SPL) GO TO 610
DETPP=DETP

DETP=DET

SSPD=SPD

GO TO 290

MA=0

LN=LN+I

IF (LN-50) 470,470,460
CONTINUE

LN=I

CONTINUE

CRT (NC) =SPD

TCRT (NC, IROT) =CRT (NC)
*****************************************

_- NC = NC+I

LN=LN+ 3

EYI (i)=0.

_ EY2 (i)=i.
_L_ DTX=0.

I=l

IF (LN-50) 490,490,480
80 CONTINUE

-. LN=I

490 CONTINUE
LN=LN+2

00 DEFL(I) =V*EYI (I) -VRI*EY2 (I)

-- IF (I.NE.I) GO TO 510

EYTH (I )=V
= GO TO 520

I0 EYTH (I) =EANI (I) *V-EAN2 (I) *VRI

_20 DEFA=ABS (DEFL(I))

DMXA=ABS (DTX)
I=I+l

i :i0

450

460

_-70

J



-- IF (DEFA-DMXA) 540,540,530
530 DTX=DEFL (I-l)

i40 IF (I-NSTAT(IROT)) 550,550,560

__;50 GO TO 500

560 DO 570 I=I,NSTAT(IROT)

DPC (I )=DEFL (I )/DTX

EYTH (I )=EYTH (I )/DTX
-- EEYTH (NC-I, I) =EYTH (I)

570 DDPC (NC-I, I) =DPC (I)
DO 600 I=I,NSTAT(IROT)
LN=LN+I

-- IF (LN-54) 590,590,580
580 CONTINUE

LN=I

i90 CONTINUE
LN=LN+I

600 CONTINUE

_ SPD=SSPD+DSP

_. DETP=0.
GO TO 290

510 CONTINUE

_************** END OF THE LOOP 290-610 **************************

******************************************************************

DO 6200 IBEAR= I,NBEAR(IROT)

DO 6201 I=i,6

DO 6201 J=l,6

-- STIF2(IROT,IBEAR, I,J)= STIF BEAR(IROT,IBEAR, I,J)

DAMP2 (IROT, IBEAR, I, J) = DAMP_BEAR (IROT, IBEAR, I, J)
6201 CONTINUE

6200 CONTINUE
******************************************************************

C* SUBSTRACTING AVERAGE BEARING STIFFNESS FROM STIFFNESS MATRIX *C

DO 620 IBEAR=I,NBEAR(IROT)

-- STIF_AV(IROT,IBEAR,I,I)=0.5*( STIF BEAR(IROT,IBEAR, I,I) +
& STIF BEAR(IROT,IBEAR, 3,3)--)

STIF_AV(IROT, IBEAR, 2,2)=0.5*( STIF BEAR(IROT,IBEAR, 2,2) +

& STIF_BEAR(IROT,IBEAR,4,4) )
AK= STIF AV(IROT,IBEAR,I,I)

AKR= STIF AV(IROT,IBEAR, 2,2)

: _ STIF_BEAR(IROT, IBEAR, i, I) =STIF_BEAR (IROT, IBEAR, i, i) -AK

__ STIF_BEAR(IROT,IBEAR, 3,3)=STIF_BEAR(IROT,IBEAR, 3,3)-AK

STIF_BEAR(IROT,IBEAR, 2,2)=STIF BEAR(IROT,IBEAR, 2,2)-AKR

STIF BEAR(IROT,IBEAR, 4,4)=STIF_BEAR(IROT,IBEAR,4,4)-AKR
_20 CONTINUE

******************************************************************

C* FOR THE TRANSIENT PART OF THE PROGRAM *C

_6211
6210

i

DO 6210 IBEAR= I,NBEAR(IROT)

DO 6211 I=i,4

DO 6211 J=l,4

STIFA(IROT,IBEAR,I,J)= STIF_AV(IROT,IBEAR, I,J)
CONTINUE

CONTINUE

DO 6220 IBEAR= I,NBEAR(IROT)

DO 6221 I=5,6

DO 6221 J=5,6

STIFA(IROT,IBEAR, I,J)= 0.0
z6221 CONTINUE
_6220 CONTINUE
******************************************************************

AK=O.O

AKR=0.0

DO 60 IBEAR=I,NBEAR(IROT)

WRITE (NUNIT(NCOUNT),*) 'STIFFNESS MATRIX FOR ' ,IBEAR,' BEARING'
WRITE (NUNIT (NCOUNT) ,2) ( ( STIF2 (IROT, I BEAR, I,J) ,J=l, 6), I=l, 6)



u_ 2

60

WRITE (NUNIT (NCOUNT) ,*)

WRITE (NUNIT(NCOUNT) ,*) 'DAMPING MATRIX FOR ', IBEAR, ' BEARING'

WRITE (NUNIT(NCOUNT),2) (( DAMP2(IROT,IBEAR, I,J),J=I,6),I=I,6)
FORMAT(2X, 6F12.3 )
CONTINUE

**************************************************************
_** NCS -> NUMBER OF CRITICAL SPEED= NSPEED II=ISPEED

NSPEED= NC-I

:** OUTPUT THE RESULTS OF TUE ABOVE CALCULATIONS ******************C

-- DO 650 ISPEED=I,NSPEED

WMOD(ISPEED)=0.

DO 630 ISTAT=I,NSTAT(IROT)

_30 WMOD(ISPEED)=WMOD(ISPEED)+

& ITRANS(ISTAT)*EEYTH(ISPEED,ISTAT)**2.0 +

& W(ISTAT)*DDPC(ISPEED,ISTAT)**2.0

WMOD (ISPEED) =WMOD (ISPEED) /386.4

-- TWMOD(ISPEED, IROT)=WMOD(ISPEED)

DO 640 ISTAT=I,NSTAT(IROT)
** EEYTH - SLOPE OF THE BEAM

EEYTH(ISPEED, ISTAT)=EEYTH(ISPEED,ISTAT)/(WMOD(ISPEED)**0.5)
C** DDPC - DEFLECTION OF THE BEAM

DDPC(ISPEED,ISTAT)=DDPC(ISPEED, ISTAT)/(WMOD(ISPEED)**0.5)
_** REAL LMODE(NROT,NMODE,NSTAT) - LATERAL MODE SHAPES OF THE SYSTEM

LMODE(IROT,ISPEED,ISTAT)= DDPC(ISPEED, ISTAT)
c** TEEYTH - SLOPE OF THE BEAM

SLOPE(IROT, ISPEED, ISTAT)= EEYTH(ISPEED,ISTAT)
_** SHAPE ARRAY KEEPS THE RESULTS OF CALCULATIONS **************C

SHAPE(IROT,ISPEED,ISTAT, I)= LMODE(IROT,ISPEED,ISTAT)
SHAPE(IROT,ISPEED,ISTAT,2)= SLOPE(IROT,ISPEED,ISTAT)

--640 CONTINUE

650 CONTINUE

_ WRITE (NUNIT(NCOUNT-2),*) ' OUTPUT DATA '

WRITE (NUNIT(NCOUNT-2),*) ' LATERAL FREQUENCIES AND MODE
& SHAPES '

"' WRITE (NUNIT (NCOUNT-2), *)

WRITE (NUNIT(NCOUNT-2),*) ' ROTOR ' ' #' IROT

CC WRITE (NUNIT(NCOUNT-2),*) ' LATERAL FREQUENCIES '
:_ DO 660 ISPEED=I,NSPEED

WRITE (NUNIT (NCOUNT-2) ,*)

"-_ WRITE (NUNIT(NCOUNT-2),*) 'NO ' ' FREQUENCY ( HZ )'• f f

1 ' MODAL WEIGHT '

_ WRITE (NUNIT(NCOUNT-2),*) ISPEED, CRT(ISPEED)/60.0, WMOD(ISPEED)
*****************************************************************

FREQ (IROT, ISPEED, I) =CRT (ISPEED)

FREQ (IROT, ISPEED,_ )=CRT (ISPEED)

[]H WRITE (NUNIT (NCOUNT-2), *)
WRITE (NUNIT(NCOUNT-2) ,*)

WRITE (NUNIT(NCOUNT-2),*) ' MODE SHAPES FOR ROTOR NO ' IROT• I

WRITE (NUNIT(NCOUNT-2),*)' #STATION DEFLECTION SLOPE '

WRITE (NUNIT (NCOUNT-2), *)

W DO 660 ISTAT=I,NSTAT(IROT)

WRITE (NUNIT (NCOUNT-2) ,*) ISTAT, LMODE (IROT, ISPEED, ISTAT) ,

& SLOPE (IROT, ISPEED, ISTAT)

CONTINUE

WRITE (NUNIT(NCOUNT-2) ,*)

WRITE (NUNIT(NCOUNT-2),*) ' CHECK-OUT THE ORTHOGONALITY OF
& THE MODE SHAPES '

WRITE (NUNIT(NCOUNT-2),*) ' MODE SHAPES ARE NORMALIZED WITH
& RESPECT TO MASS MATRIX '



_70

480

WRITE (NUNIT(NCOUNT-2), *)
DO 680 ISPEED=I,NSPEED
DO 670 JSPEED=I,NSPEED
TMX( ISPEED, JSPEED)=0.
DO 670 ISTAT=I,NSTAT(IROT)
TMX( ISPEED, JSPEED)=TMX(ISPEED, JSPEED) +

& W(ISTAT) *LMODE(IROT, ISPEED, ISTAT) *
& LMODE(IROT, JSPEED,ISTAT)/386.4+
& ITRANS(ISTAT) *SLOPE(IROT, ISPEED, ISTAT) *
& SLOPE(IROT, JSPEED,ISTAT)/386.4
CONTINUE

WRITE (NUNIT(NCOUNT-2), *) (TMX(ISPEED,JSPEED) ,JSPEED=I,NSPEED
CONTINUE

NCT=NS PEE D

NMODE (IROT) =NCTCCCCCCCCC

NM(IROT)=NCT

WRITE (NUNIT(NCOUNT),*)

WRITE (NUNIT(NCOUNT),*) 'NUMBER OF FOUND NATURAL FREQUENCIES'

WRITE (NUNIT(NCOUNT),*) NM(IROT)

IF(NMODE(IROT) - NM(IROT) .NE. 0 ) THEN
WRITE (NUNIT(NCOUNT),*)'THE HIGHER FREQUENCIES AND MODE SHAPES'

WRITE (NUNIT(NCOUNT),*) ' WILL BE TAKEN AS ZEROS '
ENDIF

._**

C

C*

70O

= :

C**

NTYPE=I CORRESPONDS TO TORSIONAL VIBRATION

NTYPE=2 CORRESPONDS TO Z-DIRECTION ( THRUST ) VIBRATION

NTYPE=I
CONTINUE

NMODE=I
IROT=NROT

NE=IROT i
NSTATX=NSTAT (IROT)
IF (NTYPE.EQ.I% THEN .'

DO 710 ISTAT=I_NSTAT(IROT)

GGO (ISTAT) =GGO (ISTAT) *i0000000.0

! GJ (ISTAT) =32.0*DX (ISTAT) / (PI*GGO (ISTAT) *

_ & (DOUT (ISTAT) **4-DIN (ISTAT) **4) )
WJ (ISTAT) =PI*RO (ISTAT) *DX (ISTAT) *

& (DOUT (ISTAT) **4-DIN (ISTAT) **4)/32.0/386.4+= :

& ITRANS (ISTAT)/386.4
_710 CONTINUE

ENDIF

:! IF (NTYPE.EQ.2) THEN
_ DO 720 ISTAT=I,NSTAT(IROT)

TK(ISTAT) =0.0

EM(ISTAT) =EM(ISTAT) *I000000.0

GJ (ISTAT) = 4 •0*DX (ISTAT) / (PI*EM (ISTAT) *

& (DOUT (ISTAT) **2-DIN (ISTAT) **2) )

WJ (ISTAT) = PI*RO (ISTAT) * DX (ISTAT) *

& (DOUT (ISTAT) **2-DIN (ISTAT) **2)/4.0/386.4+

& EXTERNAL_WEIGHT (ISTAT) /386.4
h720 CONTINUE

ENDIF

********************************



MCY=0
ST=20.0
AOI=0.O

730 AOI=AOI+ST
AO2=AOI+ST

***************************************

CALL SBC(NSTATX,NBC,AOI,BI,C-J,WJ,TK)

CALL SBC(NSTATX,NBC,AO2,B2,GJ,WJ,TK)
***************************************

IF((BI*B2).LE.0.0) GOTO 740
GO TO 730

i

__740 MCY=MCY+I

IF(MCY.GT.NMODE(IROT)) GOTO 770
AI=AOI

A2=AO2

_750 IF(ABS(AI-A2).LT.0.1) GOTO 760

AAI=AI+O. 618" (A2-AI)
*******************************************

CALL SBC(NSTATX,NBC,AAI,BB,GJ,WJ,TK)
******************************************

IF ((BI*BB) .LE. 0.0 ) THEN
A2=AAI
B2=BB

ELSE

AI=AAI

BI=BB
ENDIF

GOTO 750

FR(MCY,IROT)=0.5*(AI+A2)760

770

IF (NTYPE .GT. 1 ) ZF(MCY,IROT)=FR(MCY,IROT)

FFR (MCY) =FR (MCY, IROT)/2.0/PI
GOTO 730

CONTINUE

NI=NSTAT (IROT) +i

DO 780 IMODE=I,NMODE(IROT)

FV(I, IMODE) =I. 0

TV (I, IMODE) =-WJ (1 ) *FR (IMODE, IROT) **2

_ DO 780 ISTAT=2,NSTAT(IROT)

TV(ISTAT, IMODE) =TV (ISTAT-I ,IMODE) * ( i. 0+
& (TK(ISTAT) -WJ(ISTAT) *FR(IMODE, IROT) **2) *GJ(ISTAT) )

& +FV(ISTAT-I, IMODE) * (TK(ISTAT) -WJ (ISTAT) *FR(IMODE, IROT) **2 )

"_ FV(ISTAT,IMODE)=TV(ISTAT-I,IMODE) *GJ(ISTAT) + FV(ISTAT-I,IMODE)
78O CONTINUE

DO 790 I_{ODE=I,NMODE(IROT)
z

CO=0.0

DO 800 ISTAT=I,NSTAT(IROT)

800 CO=CO+FV (ISTAT, IMODE) **2*WJ (ISTAT)

_ DO 790 ISTAT=I,NSTAT(IROT)

_ FFV (IMO DE, I STAT, IROT) =FV (IS TAT, IMODE )/SQRT (CO)
SHAPE (IROT, IMODE, ISTAT, 5 -NTYPE )=FFV (IMODE, ISTAT, IROT )

IF (NTYPE .NE. i) ZFV(IMODE, ISTAT, IROT) =FFV (IMODE, ISTAT, IROT)

_ 790 CONTINUE

--_ DO 8 i0 ISTAT=I, NSTAT (IROT)

DO 810 IMODE=I,NMODE (IROT)

810 WF (ISTAT, IMODE) =WJ (ISTAT) *FFV (IMODE, ISTAT, IROT)
********************************************************************

DO 820 IMODE=I,NMODE (IROT)

DO 820 JMODE=I,NMODE(IROT)
_J

_ AT (IMODE, JMODE) =0.0

DO 820 ISTAT=I,NSTAT(IROT)

820 AT (IMODE, JMODE) =AT (IMODE, JMODE) +

__ & WF (ISTAT, JMODE) *FFV (IMODE, ISTAT, IROT)
--*********************************************************************

_********* OUTPUT OF TORSIONAL PART *********************************

C************* OUTPUT FOR TORSIONAL VIBRATION ***********************

r _ IF (NTYPE .EQ. 1 ) THEN



WRITE (NUNIT(NCOUNT-i),*) ' TORSIONAL MODE SHAPES AND

& FREQUENCIES '

WRITE (NUNIT(NCOUNT-I) ,*)

WRITE ( NUNIT(NCOUNT-I),II01 ) IROT
_*************** TORSIONAL FREQUENCY *******************************

DO 825 IMODE=I,NMODE(IROT)

FREQ (IROT, IMODE, 5-NTYPE) =FR (IMODE, IROT)
825 CONTINUE

WRITE ( NUNIT(NCOUNT-I),* )
WRITE (NUNIT(NCOUNT-I) ,* )

WRITE (NUNIT(NCOUNT-I) ,* )

WRITE (NUNIT(NCOUNT-I) ,* )
&

DO 830 ISTAT=I,NSTAT(IROT)

' MODE SHAPES '

( IMODE, IMODE=I,NMODE(IROT)

' TORSIONAL FREQUENCY ( HZ )

( FREQ (IROT, IMODE, 4)/60.0,

IMODE=I,NMODE (IROT))

WRITE ( NUNIT(NCOUNT-I),* ) ISTAT,(SHAPE(IROT,IMODE,ISTAT,4),

& IMODE=I,NMODE(IROT))
830 CONTINUE

ENDIF

-C************ OUTPUT FOR Z-DIRECTION VIBRATION *******************************

IF ( NTYPE .EQ. 2 ) THEN

WRITE (NUNIT(NCOUNT-I),*) ' Z-DIRECTION MODE SHAPES '

WRITE ( NUNIT(NCOUNT-I),2101 ) IROT
"72*************** Z-DIRECTION FREQUENCY *******************************

DO 835 IMODE=I,NMODE(IROT)

FREQ(IROT,IMODE,5-NTYPE)=ZF(IMODE,IROT)
835 CONTINUE

L_

840

WRITE (NUNIT(NCOUNT-I) ,* )

WRITE (NUNIT(NCOUNT-I) ,* )

WRITE (NUNIT(NCOUNT-I) ,* )
WRITE ( NUNIT(NCOUNT-I),* )

&

WRITE ( NUNIT(NCOUNT-I),* )

DO 840 ISTAT=I,NSTAT(IROT)

' MODE SHAPES '

( IMODE, IMODE=I,NMODE(IROT) )

' Z-DIRECTION FREQUENCY ( HZ ) '

' ', ( FREQ(IROT,IMODE,3)/60.0,

IMODE=I,NMODE(IROT) )

WRITE ( NUNIT(NCOUNT-I),* ) ISTAT, (SHAPE(IROT,IMODE,ISTAT,3),

& IMODE=I, NMODE (IROT))
CONTINUE

ENDIF

***********************************************************************

61 FORMAT (I2, 8F8.3 )

ii01 FORMAT('TORSIONAL FREQUENCY AND ORTHONOMAL MODE ** IROT=' I2)

'IMODE=' I3 30X,'FREQUENCY=',2FI0.3)1102 FORMAT (3X, ,

' ISTAT=' 14X 'FV(J I)=' 12X 'FFV(J I)' 8X,'TV=')_ii03 FORMAT (2X, , , , , , , ,

1104 FORMAT (2X, I3,8X, GI4.6 _8X, FI2.6,6X, GI2.5)

1105 FORMAT (3(/2X,3FI6.8))

_ii09 FORMAT (2X,I5,2FI3.5)

2101 FORMAT( 'Z-DIRECTION FREQUENCY AND ORTHONOMAL MODE * IROT=', I2)

2102 FORMAT(3X, 'IMODE=',I3 30X,, 'FREQUENCY=',FI0.3)
;_2103 FORMAT(2X,' ISTAT=',I4X,'ZV(J,I)=',I2X,'ZFV(J,I)',8X,'FZ=')

--2109 FORMAT (2X,I5,FI3.5,2EI5.8)

_** CARD FOR THE END OF THE TORSIONAL AND Z-DIRECTION PART **C

NTYPE= NTYPE + 1

-- IF ( NTYPE-I .EQ. 1 ) GOTO 700



201

DO 201 IROT=I,NROT
DO 201 IBEAR=I,NBEAR(IROT)
DO 201 JROT=I,NROT
DO 201 JBEAR=I,NBEAR(JROT)
NCON_BEAR( IROT, IBEAR, JROT, JBEAR)=0
CONTINUE

C* INPUT FOR BEAR CONNECTIONS*************C
********************************************

READ (NUNIT(1) ,*)

-- READ (NUNIT(1),*) JCHECK4

C* JCHECK4 IS AN INTEGER SHOWING THE NUMBER OF LINES IN A BEARING CONNECTION TAB
"JE.

:* THE BEARING CONNECTION T_BLE IS IN THE FORM:
[

_C* IROT IBEAR JROT JBEAR ITyPE_CON
C* IROT - I-TH ROTOR INDEX

;* IBEAR - I-TH BEARING OF I-TH ROTOR INDEX

_* JROT - J-TH ROTOR INDEX
-_* JBEAR - J-TH BEARING OF J-TH ROTOR INDEX

C* ITYPE_CON - TYPE OF CONNECTION BETWEEN (IROT,IBEAR) AND (JROTOR,JBEAR)
;* IF ITYPE_CON =0 THEN BEARING IS CONNECTED TO THE GROUND,AND
_* THERE IS NO CONNECTION TO ANOTHER BEARING OR TO CASING.

C* IF ITYPE CON !=0 IT SHOWS THE TYPE OF BEARING STIFFNESS USED

c* IN THE CALCULATION OF THE BEARING FORCE BETWEEN (IROT,IBEAR) AND (JROTOR,JBEA
',).

-,2* THE TYPE OF BEARING STIFFNESS IS THE NUMBER OF THE BEARING STIFFNESS TABLE.

WRITE (NUNIT(NCOUNT), *)

WRITE (NUNIT(NCOUNT),*) ' BEARINGS CONNECTION TABLE '

WRITE (NUNIT(NCOUNT) ,*) ' IROT IBEAR JROT JBEAR
& ITYPE CON '

IF( JCHECK4 EQ 0 ) THEN

WRITE (NUNIT(NCOUNT) ,*) ' ALL BEARINGS ARE CONNECTED TO
& GROUND'

_:! ENDI F

DO 203 JJ=I,JCHECK4

_C* IROT,IBEAR CONNECTED TO JROT,JBEAR, TYPE OF CONNECTION

R READ (NUNIT(1) ,*) IROT,IBEAR,JROT,JBEAR,
& ITYPE CON

NCON BEAR (IROT, I BEAR, JROT, JBEAR) =ITYPE CON

NCON--BEAR (JROT, JBEAR, IROT, IBEAR) =ITYPE--CON

WRITE (NUNIT(NCOUNT) ,*) IROT, ' ', IBEAR, ' ',JROT, ' ',JBEAR, ' '
& ITYPE CON

_L! WRITE (NUNIT(NCOUNT),*) --
h_203 CONTINUE

IF(NSWITCH(1) .EQ. 0 ) GOTO i000

**********************************************************************

************************** END OF THE MAIN BODY OF LAT ***************C

___**********************************************************************

E* WE JUST FOUND ABOVE THE @LANAR UNDAMPED NATURAL FREQUENCIES AND *C
_* MODE SHAPES.NOW WE PROCEED FOR THE CALCU_TIONS OF THE DAMPED *C

c* MODE SHAPES AND FREQUENCIES WHICH ARE NEEDED FOR THE STABILITY *C
_* ANALYSIS OF THE PROBLEM.HERE WE JUST CALCULATE A GLOBAL MATRIX *C

_* FOR THE EIGENVALUE PROBLEM.USING THIS GLOBAL MATRIX YOU CAN FIND *C

C* THE EIGENVALUES AND MODE SHAPES BY ANY OTHER STANDART PROGRAM. *C

{_* THIS PART IS ADDED TO CREATE A GLOBAL MATRIX FOR THE EIGENVALUE *C
E* SOLVER PROGRAM. *C

***********************************************************************

DO 950 IROT=I,NROT

_ NSPEED= NMODE(IROT)



DO 911 I=I,NSPEED

w

L



911

DO 911 J=I,NSPEED

KBAR(I,J)--O. 0

CBAR (I, J) =0.0
CONTINUE

DO 900 IBEAR=I,NBEAR(IROT)

901

ISTAT= LBEAR(IROT,IBEAR)

DO 901 ISPEED=I,NSPEED

FMODE(IROT, ISPEED,I)= SHAPE(IROT,ISPEED,ISTAT,I)

FMODE(IROT,ISPEED,2)= SHAPE(IROT,ISPEED, ISTAT,2)

FMODE(IROT,ISPEED, 3)= FMODE(IROT,ISPEED,I)
FMODE(IROT,ISPEED, 4)= FMODE(IROT,ISPEED, 2)
CONTINUE

902

L_
E ,

_"_910

900
LJ

_c

DO 910 ISPEED=I,NSPEED

DO 910 JSPEED=I,NSPEED
SBARK= 0.0

SBARC= 0.0

DO 902 I=I,2

DO 902 J=l,2
SBARK= SBARK +

& FMODE(IROT,ISPEED,I)*STIF__BEAR(IROT, IBEAR, I,J)

& *FMODE(IROT,JSPEED,J)
SBARC= SBARC +

& FMODE(IROT,ISPEED,I)*DAMP__BEAR(IROT, IBEAR,I,J)
& *FMODE(IROT,JSPEED,J)
CONTINUE

KBAR(ISPEED,JSPEED)= KBAR(ISPEED,JSPEED) + SBARK

CBAR(ISPEED,JSPEED)= CBAR(ISPEED,JSPEED) + SBARC
CONTINUE

CONTINUE

WRITE(56,* ) ((CBAR(I,J),J=I,NSPEED),I=I,NSPEED)

DO 920 I=I,2*NSPEED

DO 920 J=I,2*NSPEED

AGLOB (IROT, I, J) = 0.0
920 CONTINUE

-* FORM IDENTITY MATRIX BLOCK *C

DO 925 I=I,NSPEED

DO 925 J=NSPEED+I,2*NSPEED

IF( I .EQ. J-NSPEED )AGLOB(IROT,I,J)= 1.0
925 CONTINUE

DO 930 I=NSPEED+I, 2*NSPEED

DO 930 J=I,NSPEED

AGLOB (IROT ,I, J) = -KBAR (I-NSPEED, J)

IF( J .EQ. I-NSPEED )
& AGLOB (IROT, I, J) = AGLOB (IROT, I, J) -

& (FREQ (IROT, J, i)/9. 554) *'2.0

_930 CONTINUE
uJ DO 935 I=NSPEED+I,2*NSPEED

DO 935 J=NSPEED+I,2*NSPEED

AGLOB (IROT, I, J) = -CBAR (I-NSPEED, J-NSPEED)

935 CONTINUE

WRITE (30+IROT, *) ' MATRIX 2*NSPEEDx2*NSPEED

WRITE(30+IROT,*) 2*NSPEED, 2*NSPEED

=_ WRITE (30+IROT,*) ' GLOBAL MATRIX FOR IROT ' IROT

-940

WRITE (30+IROT, 940)

& ( (AGLOB (IROT, I,J) ,J=l, 2*NSPEED), I=l, 2*NSPEED)
FORMAT(6(GII.3,1X) )

950 CONTINUE



• 921

952

DO 952 IROT=I,NROT

DO 952 I=I,2*NSPEED

DO 952 J=I,2*NSPEED

II= (IROT-I)*2*NSPEED + I

JJ= (IROT-I)*2*NSPEED + J

ASUPER(II,JJ)= AGLOB(IROT,I,J)
CONTINUE

DO 955 IROT=I,NROT

DO 956 JROT=I,NROT
IF( IROT .EQ. JROT ) GOTO 956

***********************************

IF(NMODE(IROT) -NMODE(JROT) .NE. 0 ) THEN
WRITE(NUNIT(NCOUNT), *) 'WARNING:', IROT ,'AND ',JROT,

& ' HAVE DIFFERENT NUMBER OF MODES '

._!J_ WRITE(NUNIT(NCOUNT) , *) 'A-SUPER WILL NOT BE CALCULATED '

WRITE(NUNIT(NCOUNT), *) 'CHANGE NUMBER OF MODE SHAPES '

STOP

ENDIF
***********************************

DO 958 I=I,NSPEED

_-_ DO 958 J=I,NSPEED

_ K2BAR(I,J)=0.0
C2BAR(I,J)=0.0
CONTINUE_958

"960

DO 957 IBEAR= I,NBEAR(IROT)
DO 959 JBEAR= I,NBEAR(JROT)

IF( NCON BEAR(IROT,IBEAR,JROT,JBEAR) .NE. 1 ) GOTO 959

NSPEED= NMODE(IROT)
ISTAT= LBEAR(IROT,IBEAR)

JSTAT= LBEAR(JROT,JBEAR)

DO 960 ISPEED=I,NSPEED

FMODE(IROT,ISPEED, I)= SHAPE(IROT,ISPEED,ISTAT,I)
FMODE(IROT,ISPEED,2)= SHAPE(IROT,ISPEED,ISTAT,2)

FMODE(IROT,ISPEED, 3)= FMODE(IROT,ISPEED, I)

FMODE(IROT,ISPEED,4)= FMODE(IROT,ISPEED, 2)

FMODE(JROT,ISPEED, I)= SHAPE(JROT,ISPEED,JSTAT,I)

FMODE(JROT,ISPEED, 2)= SHAPE(JROT,ISPEED,JSTAT,2)

FMODE(JROT,ISPEED,3)= FMODE(JROT,ISPEED, I)
FMODE(JROT,ISPEED,4)= FMODE(JROT,ISPEED, 2)
CONTINUE

E: :
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963

DO 961 ISPEED=I,NSPEED

DO 961 JSPEED=I,NSPEED

DO 962 I=i,2
SBARK= 0.0

SBARC= 0.0

DO 963 J=l,2
SBARK= SBARK +

& ( STIF BEAR(IROT,IBEAR, I,J)+STIF_AV(IROT,IBEAR,I,J) )

& *FMODE(JROT,JSPEED,J)
SBARC= SBARC + DAMP BEAR(IROT,IBEAR,I,J)*FMODE(JROT,JSPEED,J)

CONTINUE

K2BAR(ISPEED,JSPEED)= K2BAR(ISPEED,JSPEED) +



962
961

& FMODE(IROT, ISPEED, I) eSBARK
C2BAR(ISPEED, JSPEED) = C2BAR (ISPEED, JSPEED)

& FMODE (IROT, ISPEED, I) *SBARC
CONTINUE
CONTINUE

+

959 CONTINUE

957 CONTINUE

:****C

DO 964 I=IROT*2*NSPEED, IROT*2*NSPEED+NSPEED-I

DO 964 J=JROT*2*NSPEED, JROT*2*NSPEED+NSPEED-I

ASUPER(I-NSPEED+I,J-NSPEED+I)=

& C2BAR(I-IROT*2*NSPEED+I,J-JROT*2*NSPEED+I)
ASUPER(I-NSPEED+I,J-2*NSPEED+I)=

& K2BAR(I-IROT*2*NSPEED+I,J-JROT*2*NSPEED+I)

964 CONTINUE

956 CONTINUE
955 CONTINUE

WRITE(40,*)' MATRIX 2&NROT*NSPEEDx2*NROT*NSPEED

WRITE(40,*) 2*NROT*NSPEED, 2*NROT*NSPEED

WRITE(40,*)' GLOBAL MATRIX FOR NROT ',NROT

WRITE (40,967)

& ((ASUPER(I,J) ,J=l, 2*NROT*NSPEED) ,I=l, 2*NROT*NSPEED)

FORMAT(6(GI0.3,1X) )

i000 CONTINUE

RETURN
END

20

SUBROUTINE S BC (NSTATX, NBC, OM, A, C-J, WJ, TK)

* THIS IS TO SET BOUNDARY CONDITIONS FOR MATRIX TRANSFORM METHOD *
********************************************************************

INTEGER NBC

REAL D(2,2),B(2,2),C(2,2)

REAL SJ (NSTATX) ,WJ (NSTATX) , TK (NSTATX)

C(2,2)=I.0
B(I,I)=I.0

B(I,2)=0.0
B(2,1)=0.0

B(2,2)=I.0
DO 20 I=I,NSTATX

C (i, i) =I. 0+ (TK(I)-WJ (I) *OS**2) *GJ (I)
C(I,2)=TK(I) -WJ(I)*OM**2

C (2, i)=I. 0*GJ (I)

D(l, i)=C(l, I)*B(I, i) +C(I, 2) *B(2, i)
D(I, 2) =C(I, i) *B(I, 2)+C(I, 2) *B(2,2)

042 ,i)=C(2, i) *B(I, I) +C (2,2) *B(2, I)

D(2,2) =C(2, i) *B(I, 2) +C (2,2) *B(2,2)

B(I, l)=D(l, I)

B(1,2)=0(1,2)

B(2, i)=0(2, I)

B(2,2)=0(2,2)
CONTINUE

NBC=2

FREE ......... FIXED -> NBC=I

IF( NBC .EQ. 1 ) A=B(2,2)
FREE ......... FREE -> NBC=2

IF( NBC .EQ. 2 ) A=B(I,2)



FIXED ........ FIXED -> NBC=3

IF( NBC .EQ. 3 ) A=B(2,1)
FIXED ........ FREE -> NBC=4

IF( NBC .EQ. 4 ) A=B(I,I)

RETURN

END

, _= -


